A real valued function f ( x ) {\displaystyle f(x)} defined over an interval I {\displaystyle I} in the real line is called an absolutely monotonic function if it has derivatives f ( n ) ( x ) {\displaystyle f^{(n)}(x)} of all orders n = 0 , 1 , 2 , … {\displaystyle n=0,1,2,\ldots } and f ( n ) ( x ) ≥ 0 {\displaystyle f^{(n)}(x)\geq 0} for all x {\displaystyle x} in I {\displaystyle I} .8 The function f ( x ) {\displaystyle f(x)} is called a completely monotonic function if ( − 1 ) n f ( n ) ( x ) ≥ 0 {\displaystyle (-1)^{n}f^{(n)}(x)\geq 0} for all x {\displaystyle x} in I {\displaystyle I} .9
The two notions are mutually related. The function f ( x ) {\displaystyle f(x)} is completely monotonic if and only if f ( − x ) {\displaystyle f(-x)} is absolutely monotonic on − I {\displaystyle -I} where − I {\displaystyle -I} the interval obtained by reflecting I {\displaystyle I} with respect to the origin. (Thus, if I {\displaystyle I} is the interval ( a , b ) {\displaystyle (a,b)} then − I {\displaystyle -I} is the interval ( − b , − a ) {\displaystyle (-b,-a)} .)
In applications, the interval on the real line that is usually considered is the closed-open right half of the real line, that is, the interval [ 0 , ∞ ) {\displaystyle [0,\infty )} .
The following functions are absolutely monotonic in the specified regions.10: 142–143
A sequence { μ n } n = 0 ∞ {\displaystyle \{\mu _{n}\}_{n=0}^{\infty }} is called an absolutely monotonic sequence if its elements are non-negative and its successive differences are all non-negative, that is, if
where Δ k μ n = ∑ m = 0 k ( − 1 ) m ( k m ) μ n + k − m {\displaystyle \Delta ^{k}\mu _{n}=\sum _{m=0}^{k}(-1)^{m}{k \choose m}\mu _{n+k-m}} .
A sequence { μ n } n = 0 ∞ {\displaystyle \{\mu _{n}\}_{n=0}^{\infty }} is called a completely monotonic sequence if its elements are non-negative and its successive differences are alternately non-positive and non-negative,11: 101 that is, if
The sequences { 1 n + 1 } 0 ∞ {\displaystyle \left\{{\frac {1}{n+1}}\right\}_{0}^{\infty }} and { c n } 0 ∞ {\displaystyle \{c^{n}\}_{0}^{\infty }} for 0 ≤ c ≤ 1 {\displaystyle 0\leq c\leq 1} are completely monotonic sequences.
Both the extensions and applications of the theory of absolutely monotonic functions derive from theorems.
The following is a selection from the large body of literature on absolutely/completely monotonic functions/sequences.
"Absolutely monotonic function". encyclopediaofmath.org. Encyclopedia of Mathematics. Retrieved 28 December 2023. https://encyclopediaofmath.org/wiki/Absolutely_monotonic_function ↩
S. Bernstein (1914). "Sur la définition et les propriétés des fonctions analytique d'une variable réelle". Mathematische Annalen. 75 (4): 449–468. doi:10.1007/BF01563654. /wiki/Doi_(identifier) ↩
S. Bernstein (1928). "Sur les fonctions absolument monotones". Acta Mathematica. 52: 1–66. doi:10.1007/BF02592679. https://doi.org/10.1007%2FBF02592679 ↩
Guo, Senlin (2017). "Some Properties of Functions Related to Completely Monotonic Functions" (PDF). Filomat. 31 (2): 247–254. doi:10.2298/FIL1702247G. Retrieved 29 December 2023. https://www.pmf.ni.ac.rs/filomat-content/2017/31-2/31-2-7-1944.pdf ↩
Guo, Senlin; Laforgia, Andrea; Batir, Necdet; Luo, Qiu-Ming (2014). "Completely Monotonic and Related Functions: Their Applications" (PDF). Journal of Applied Mathematics. 2014: 1–3. doi:10.1155/2014/768516. Retrieved 28 December 2023. https://downloads.hindawi.com/journals/jam/2014/768516.pdf ↩
R. Askey (1973). "Summability of Jacobi series". Transactions of the American Mathematical Society. 179: 71–84. doi:10.1090/S0002-9947-1973-0315351-7. /wiki/Doi_(identifier) ↩
William Feller (1971). An Introduction to Probability Theory and Its Applications, Vol. 2 (3 ed.). New York: Wiley. ISBN 9780471257097. OCLC 279852. 9780471257097 ↩
Widder, David Vernon (1946). The Laplace Transform. Princeton University Press. ISBN 9780486477558. OCLC 630478002. {{cite book}}: ISBN / Date incompatibility (help) 9780486477558 ↩