Traditional phylogenetic techniques have difficulty establishing differences between genes that are similar because of lateral gene transfer and those that are similar because the organisms shared an ancestor. By comparing large numbers of genes or entire genomes among many species, it is possible to identify transferred genes, since these sequences behave differently from what is expected given the taxonomy of the organism. Using these methods, researchers were able to identify over 2,000 metabolic enzymes obtained by various eukaryotic parasites from lateral gene transfer.
The comparison of complete gene sets for a group of organisms allows the identification of events in gene evolution such as gene duplication or gene deletion. Often, such events are evolutionarily relevant. For example, multiple duplications of genes encoding degradative enzymes of certain families is a common adaptation in microbes to new nutrient sources. On the contrary, loss of genes is important in reductive evolution, such as in intracellular parasites or symbionts. Whole genome duplication events, which potentially duplicate all the genes in a genome at once, are drastic evolutionary events with great relevance in the evolution of many clades, and whose signal can be traced with phylogenomic methods.
Traditional single-gene studies are effective in establishing phylogenetic trees among closely related organisms, but have drawbacks when comparing more distantly related organisms or microorganisms. This is because of lateral gene transfer, convergence, and varying rates of evolution for different genes. By using entire genomes in these comparisons, the anomalies created from these factors are overwhelmed by the pattern of evolution indicated by the majority of the data. Using this method, it is theoretically possible to create fully resolved phylogenetic trees, and timing constraints can be recovered more accurately. However, in practice this is not always the case. Due to insufficient data, multiple trees can sometimes be supported by the same data when analyzed using different methods.
Philippe H, Blanchette M (2007-02-08). "Overview of the First Phylogenomics Conference". BMC Ecol. Evol. 7: S1. Bibcode:2007BMCEE...7S...1P. doi:10.1186/1471-2148-7-S1-S1. hdl:1866/709. PMID 17288567. https://doi.org/10.1186%2F1471-2148-7-S1-S1
Kumar S, Filipski AJ, Battistuzzi FU, Kosakovsky Pond SL, Tamura K (February 2012). "Statistics and truth in phylogenomics". Molecular Biology and Evolution. 29 (2): 457–472. doi:10.1093/molbev/msr202. PMC 3258035. PMID 21873298. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3258035
Pennisi E (June 2008). "Evolution. Building the tree of life, genome by genome". Science. 320 (5884): 1716–1717. doi:10.1126/science.320.5884.1716. PMID 18583591. S2CID 206580993. /wiki/Elizabeth_Pennisi
Simion P, Delsuc F, Phillipe H (2020). "2.1 To What Extent Current Limits of Phylogenomics Can Be Overcome?". Phylogenetics in the Genomic Era. pp. 2.1.1–2.1.34. https://hal.inria.fr/PGE
Eisen JA, Kaiser D, Myers RM (October 1997). "Gastrogenomic delights: a movable feast". Nature Medicine. 3 (10): 1076–1078. doi:10.1038/nm1097-1076. PMC 3155951. PMID 9334711. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3155951
Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, et al. (August 1997). "The complete genome sequence of the gastric pathogen Helicobacter pylori". Nature. 388 (6642): 539–547. Bibcode:1997Natur.388..539T. doi:10.1038/41483. PMID 9252185. https://doi.org/10.1038%2F41483
Eisen JA, Kaiser D, Myers RM (October 1997). "Gastrogenomic delights: a movable feast". Nature Medicine. 3 (10): 1076–1078. doi:10.1038/nm1097-1076. PMC 3155951. PMID 9334711. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3155951
Eisen JA (March 1998). "Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis". Genome Research. 8 (3): 163–167. doi:10.1101/gr.8.3.163. PMID 9521918. https://doi.org/10.1101%2Fgr.8.3.163
Brown D, Sjölander K (June 2006). "Functional classification using phylogenomic inference". PLOS Computational Biology. 2 (6): e77. Bibcode:2006PLSCB...2...77B. doi:10.1371/journal.pcbi.0020077. PMC 1484587. PMID 16846248. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1484587
Sjölander K (January 2004). "Phylogenomic inference of protein molecular function: advances and challenges". Bioinformatics. 20 (2): 170–179. doi:10.1093/bioinformatics/bth021. PMID 14734307. https://doi.org/10.1093%2Fbioinformatics%2Fbth021
Whitaker JW, McConkey GA, Westhead DR (2009). "The transferome of metabolic genes explored: analysis of the horizontal transfer of enzyme encoding genes in unicellular eukaryotes". Genome Biology. 10 (4): R36. doi:10.1186/gb-2009-10-4-r36. PMC 2688927. PMID 19368726. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688927
Delsuc F, Brinkmann H, Philippe H (May 2005). "Phylogenomics and the reconstruction of the tree of life". Nature Reviews. Genetics. 6 (5): 361–375. CiteSeerX 10.1.1.333.1615. doi:10.1038/nrg1603. PMID 15861208. S2CID 16379422. /wiki/CiteSeerX_(identifier)
Philippe H, Snell EA, Bapteste E, Lopez P, Holland PW, Casane D "Phylogenomics of eukaryotes: impact of missing data on large alignments Mol Biol Evol 2004 Sep;21(9):1740-52. .
Jeffroy O, Brinkmann H, Delsuc F, Philippe H (April 2006). "Phylogenomics: the beginning of incongruence?" (PDF). Trends in Genetics. 22 (4): 225–231. doi:10.1016/j.tig.2006.02.003. PMID 16490279. https://hal.archives-ouvertes.fr/halsde-00315496/file/Jeffroy-TrendsGenet06_HAL.pdf
dos Reis M, Inoue J, Hasegawa M, Asher RJ, Donoghue PC, Yang Z (September 2012). "Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny". Proceedings. Biological Sciences. 279 (1742): 3491–3500. doi:10.1098/rspb.2012.0683. PMC 3396900. PMID 22628470. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3396900
Kober KM, Bernardi G (April 2013). "Phylogenomics of strongylocentrotid sea urchins". BMC Evolutionary Biology. 13 (1): 88. Bibcode:2013BMCEE..13...88K. doi:10.1186/1471-2148-13-88. PMC 3637829. PMID 23617542. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637829
Philippe, Herve'; Delsuc, Frederic; Brinkmann, Henner; Lartillot, Nicolas (2005). "Phylogenomics". Annual Review of Ecology, Evolution, and Systematics. 36: 541–562. doi:10.1146/annurev.ecolsys.35.112202.130205. /wiki/Doi_(identifier)
Burki F, Shalchian-Tabrizi K, Pawlowski J (August 2008). "Phylogenomics reveals a new 'megagroup' including most photosynthetic eukaryotes". Biology Letters. 4 (4): 366–369. doi:10.1098/rsbl.2008.0224. PMC 2610160. PMID 18522922. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2610160
Coleman, Gareth A.; Davín, Adrián A.; Mahendrarajah, Tara A.; Szánthó, Lénárd L.; Spang, Anja; Hugenholtz, Philip; Szöllősi, Gergely J.; Williams, Tom A. (7 May 2021). "A rooted phylogeny resolves early bacterial evolution". Science. 372 (6542). doi:10.1126/science.abe0511. /wiki/Doi_(identifier)
Williams, Tom A.; Szöllősi, Gergely J.; Spang, Anja; Foster, Peter G.; Heaps, Sarah E.; Boussau, Bastien; Ettema, Thijs J. G.; Embley, T. Martin (6 June 2017). "Integrative modeling of gene and genome evolution roots the archaeal tree of life". Proceedings of the National Academy of Sciences. 114 (23). doi:10.1073/pnas.1618463114. /wiki/Doi_(identifier)
Parks, DH; Chuvochina, M; Chaumeil, PA; Rinke, C; Mussig, AJ; Hugenholtz, P (September 2020). "A complete domain-to-species taxonomy for Bacteria and Archaea". Nature Biotechnology. 38 (9): 1079–1086. bioRxiv 10.1101/771964. doi:10.1038/s41587-020-0501-8. PMID 32341564. S2CID 216560589. https://www.researchgate.net/publication/340954053