The evolution of mineralized tissues has been puzzling for more than a century. It has been hypothesized that the first mechanism of animal tissue mineralization began either in the oral skeleton of conodont or the dermal skeleton of early agnathans. The dermal skeleton is just surface dentin and basal bone, which is sometimes overlaid by enameloid. It is thought that the dermal skeleton eventually became scales, which are homologous to teeth. Teeth were first seen in chondrichthyans and were made from all three components of the dermal skeleton, namely dentin, basal bone and enameloid. The mineralization mechanism of mammalian tissue was later elaborated in actinopterygians and sarcopterygians during bony fish evolution. It is expected that genetic analysis of agnathans will provide more insight into the evolution of mineralized tissues and clarify evidence from early fossil records.
Hierarchical structures are distinct features seen throughout different length scales. To understand how the hierarchical structure of mineralized tissues contributes to their remarkable properties, those for nacre and bone are described below. Hierarchical structures are characteristic of biology and are seen in all structural materials in biology such as bone and nacre from seashells
Nacre has several hierarchical structural levels.
Some mollusc shells protect themselves from predators by using a two layered system, one of which is nacre. Nacre constitutes the inner layer while the other, outer, layer is made from calcite. The latter is hard and thus prevents any penetration through the shell, but is subject to brittle failure. On the other hand, nacre is softer and can uphold inelastic deformations, which makes it tougher than the hard outer shell. The mineral found in nacre is aragonite, CaCO3, and it occupies 95% vol. Nacre is 3000 times tougher than aragonite and this has to do with the other component in nacre, the one that takes up 5% vol., which is the softer organic biopolymers. Furthermore, the nacreous layer also contains some strands of weaker material called growth lines that can deflect cracks.
The Microscale can be imagined by a three-dimensional brick and mortar wall. The bricks would be 0.5 μm thick layers of microscopic aragonite polygonal tablets approximately 5-8 μm in diameter. What holds the bricks together are the mortars and in the case of nacre, it is the 20-30 nm organic material that plays this role. Even though these tablets are usually illustrated as flat sheets, different microscopy techniques have shown that they are wavy in nature with amplitudes as large as half of the tablet's thickness. This waviness plays an important role in the fracture of nacre as it will progressively lock the tablets when they are pulled apart and induce hardening.
The 30 nm thick interface between the tablets that connects them together and the aragonite grains detected by scanning electron microscopy from which the tablets themselves are made of together represent another structural level. The organic material “gluing” the tablets together is made of proteins and chitin.
Compact bone and spongy bone are on a scale of several millimetres to 1 or more centimetres.
There are two hierarchical structures on the microscale. The first, at a scale of 100 μm to 1 mm, is inside the compact bone where cylindrical units called osteons and small struts can be distinguished. The second hierarchical structure, the ultrastructure, at a scale of 5 to 10 μm, is the actual structure of the osteons and small struts.
There are also two hierarchical structures on the nanoscale. The first being the structure inside the ultrastructure that are fibrils and extrafibrillar space, at a scale of several hundred nanometres. The second are the elementary components of mineralized tissues at a scale of tens of nanometres. The components are the mineral crystals of hydroxyapatite, cylindrical collagen molecules, organic molecules such as lipids and proteins, and finally water. The hierarchical structure common to all mineralized tissues is the key to their mechanical performance.
The mineral is the inorganic component of mineralized tissues. This constituent is what makes the tissues harder and stiffer. Hydroxyapatite, calcium carbonate, silica, calcium oxalate, whitlockite, and monosodium urate are examples of minerals found in biological tissues. In mollusc shells, these minerals are carried to the site of mineralization in vesicles within specialized cells. Although they are in an amorphous mineral phase while inside the vesicles, the mineral destabilizes as it passes out of the cell and crystallizes. In bone, studies have shown that calcium phosphate nucleates within the hole area of the collagen fibrils and then grows in these zones until it occupies the maximum space.
The organic part of mineralized tissues is made of proteins. In bone for example, the organic layer is the protein collagen. The degree of mineral in mineralized tissues varies and the organic component occupies a smaller volume as tissue hardness increases. However, without this organic portion, the biological material would be brittle and break easily. Hence, the organic component of mineralized tissues increases their toughness. Moreover, many proteins are regulators in the mineralization process. They act in the nucleation or inhibition of hydroxyapatite formation. For example, the organic component in nacre is known to restrict the growth of aragonite. Some of the regulatory proteins in mineralized tissues are osteonectin, osteopontin, osteocalcin, bone sialoprotein and dentin phosphophoryn. In nacre, the organic component is porous, which allows the formation of mineral bridges responsible for the growth and order of the nacreous tablets.
Understanding the formation of biological tissues is inevitable in order to properly reconstruct them artificially. Even if questions remain in some aspects and the mechanism of mineralization of many mineralized tissues need yet to be determined, there are some ideas about those of mollusc shell, bone and sea urchin.
The main structural elements involved in the mollusk shell formation process are: a hydrophobic silk gel, aspartic acid rich protein, and a chitin support.
The silk gel is part of the protein portion and is mainly composed of glycine and alanine. It is not an ordered structure. The acidic proteins play a role in the configuration of the sheets. The chitin is highly ordered and is the framework of the matrix. The main elements of the overall are:
The mineral-protein interface with its underlying adhesion forces is involved in the toughening properties of mineralized tissues. The interaction in the organic-inorganic interface is important to understand these toughening properties.
At the interface, a very large force (>6-5 nN) is needed to pull the protein molecules away from the aragonite mineral in nacre, despite the fact that the molecular interactions are non-bonded. Some studies perform a finite element model analysis to investigate the behaviour of the interface. A model has shown that during tension, the back stress that is induced during the plastic stretch of the material plays a big role in the hardening of the mineralized tissue. As well, the nanoscale asperities that is on the tablet surfaces provide resistance to interlamellar sliding and so strengthen the material. A surface topology study has shown that progressive tablet locking and hardening, which are needed for spreading large deformations over large volumes, occurred because of the waviness of the tablets.
Natural structural materials comprising hard and soft phases arranged in elegant hierarchical multiscale architectures, usually exhibit a combination of superior mechanical properties. For instance, many natural mechanical materials (Bone, Nacre, Teeth, Silk, and Bamboo) are lightweight, strong, flexible, tough, fracture-resistant, and self-repair. The general underlying mechanism behind such advanced materials is that the highly oriented stiff components give the materials great mechanical strength and stiffness, while the soft matrix “glues” the stiff components and transfer the stress to them. Moreover, the controlled plastic deformation of the soft matrix during fracture provides an additional toughening mechanism. Such a common strategy was perfected by nature itself over millions of years of evolution, giving us the inspiration for building the next generation of structural materials. There are several techniques used to mimic these tissues. Some of the current techniques are described here.
The large scale model of materials is based on the fact that crack deflection is an important toughening mechanism of nacre. This deflection happens because of the weak interfaces between the aragonite tiles. Systems on the macroscopic scales are used to imitate these week interfaces with layered composite ceramic tablets that are held together by weak interface “glue”. Hence, these large scale models can overcome the brittleness of ceramics. Since other mechanisms like tablet locking and damage spreading also play a role in the toughness of nacre, other models assemblies inspired by the waviness of microstructure of nacre have also been devised on the large scale.
Layer-by-layer deposition is a technique that as suggested by its name consists of a layer-by-layer assembly to make multilayered composites like nacre. Some examples of efforts in this direction include alternating layers of hard and soft components of TiN/Pt with an ion beam system. The composites made by this sequential deposition technique do not have a segmented layered microstructure. Thus, sequential adsorption has been proposed to overcome this limitation and consists of repeatedly adsorbing electrolytes and rinsing the tablets, which results in multilayers.
Thin film deposition focuses on reproducing the cross-lamellar microstructure of conch instead of mimicking the layered structure of nacre using micro-electro mechanical systems (MEMS). Among mollusk shells, the conch shell has the highest degree of structural organization. The mineral aragonite and organic matrix are replaced by polysilicon and photoresist. The MEMS technology repeatedly deposits a thin silicon film. The interfaces are etched by reactive ion etching and then filled with photoresist. There are three films deposited consecutively. Although the MEMS technology is expensive and more time-consuming, there is a high degree of control over the morphology and large numbers of specimens can be made.
The method of self-assembly tries to reproduce not only the properties, but also the processing of bioceramics. In this process, raw materials readily available in nature are used to achieve stringent control of nucleation and growth. This nucleation occurs on a synthetic surface with some success. The technique occurs at low temperature and in an aqueous environment. Self-assembling films form templates that effect the nucleation of ceramic phases. The downside with this technique is its inability to form a segmented layered microstructure. Segmentation is an important property of nacre used for crack deflection of the ceramic phase without fracturing it. As a consequence, this technique does not mimic microstructural characteristics of nacre beyond the layered organic/inorganic layered structure and requires further investigation.
The various studies have increased progress towards understanding mineralized tissues. However, it is still unclear which micro/nanostructural features are essential to the material performance of these tissues. Also constitutive laws along various loading paths of the materials are currently unavailable. For nacre, the role of some nanograins and mineral bridges requires further studies to be fully defined. Successful biomimicking of mollusk shells will depend will on gaining further knowledge of all these factors, especially the selection of influential materials in the performance of mineralized tissues. Also the final technique used for artificial reproduction must be both cost effective and scalable industrially.
Espinosa, H. D.; Rim, J. E.; Barthelat, F.; Buehler, M. J. (2009). "Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials". Progress in Materials Science. 54 (8): 1059–1100. doi:10.1016/j.pmatsci.2009.05.001. /wiki/Doi_(identifier)
Espinosa, H. D.; Rim, J. E.; Barthelat, F.; Buehler, M. J. (2009). "Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials". Progress in Materials Science. 54 (8): 1059–1100. doi:10.1016/j.pmatsci.2009.05.001. /wiki/Doi_(identifier)
Barthelat, F. (2007). "Biomimetics for next generation materials". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 365 (1861): 2907–2919. Bibcode:2007RSPTA.365.2907B. doi:10.1098/rsta.2007.0006. PMID 17855221. S2CID 2184491. /wiki/Bibcode_(identifier)
Boskey, A.; Mendelsohn, R. (2005). "Infrared spectroscopic characterization of mineralized tissues". Vibrational Spectroscopy. 38 (1–2): 107–114. doi:10.1016/j.vibspec.2005.02.015. PMC 1459415. PMID 16691288. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1459415
Glimcher, M. (1959). "Molecular Biology of Mineralized Tissues with Particular Reference to Bone". Reviews of Modern Physics. 31 (2): 359–393. Bibcode:1959RvMP...31..359G. doi:10.1103/RevModPhys.31.359. /wiki/Bibcode_(identifier)
Barthelat, F. (2007). "Biomimetics for next generation materials". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 365 (1861): 2907–2919. Bibcode:2007RSPTA.365.2907B. doi:10.1098/rsta.2007.0006. PMID 17855221. S2CID 2184491. /wiki/Bibcode_(identifier)
Espinosa, H. D.; Rim, J. E.; Barthelat, F.; Buehler, M. J. (2009). "Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials". Progress in Materials Science. 54 (8): 1059–1100. doi:10.1016/j.pmatsci.2009.05.001. /wiki/Doi_(identifier)
Barthelat, F. (2007). "Biomimetics for next generation materials". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 365 (1861): 2907–2919. Bibcode:2007RSPTA.365.2907B. doi:10.1098/rsta.2007.0006. PMID 17855221. S2CID 2184491. /wiki/Bibcode_(identifier)
Glimcher, M. (1959). "Molecular Biology of Mineralized Tissues with Particular Reference to Bone". Reviews of Modern Physics. 31 (2): 359–393. Bibcode:1959RvMP...31..359G. doi:10.1103/RevModPhys.31.359. /wiki/Bibcode_(identifier)
Barthelat, F. (2007). "Biomimetics for next generation materials". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 365 (1861): 2907–2919. Bibcode:2007RSPTA.365.2907B. doi:10.1098/rsta.2007.0006. PMID 17855221. S2CID 2184491. /wiki/Bibcode_(identifier)
Espinosa, H. D.; Rim, J. E.; Barthelat, F.; Buehler, M. J. (2009). "Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials". Progress in Materials Science. 54 (8): 1059–1100. doi:10.1016/j.pmatsci.2009.05.001. /wiki/Doi_(identifier)
Barthelat, F. (2007). "Biomimetics for next generation materials". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 365 (1861): 2907–2919. Bibcode:2007RSPTA.365.2907B. doi:10.1098/rsta.2007.0006. PMID 17855221. S2CID 2184491. /wiki/Bibcode_(identifier)
Barthelat, F. (2007). "Biomimetics for next generation materials". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 365 (1861): 2907–2919. Bibcode:2007RSPTA.365.2907B. doi:10.1098/rsta.2007.0006. PMID 17855221. S2CID 2184491. /wiki/Bibcode_(identifier)
Barthelat, F. (2007). "Biomimetics for next generation materials". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 365 (1861): 2907–2919. Bibcode:2007RSPTA.365.2907B. doi:10.1098/rsta.2007.0006. PMID 17855221. S2CID 2184491. /wiki/Bibcode_(identifier)
The Biomimetic Materials Laboratory http://barthelat-lab.mcgill.ca/research.html
Barthelat, F. (2007). "Biomimetics for next generation materials". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 365 (1861): 2907–2919. Bibcode:2007RSPTA.365.2907B. doi:10.1098/rsta.2007.0006. PMID 17855221. S2CID 2184491. /wiki/Bibcode_(identifier)
Barthelat, F. (2007). "Biomimetics for next generation materials". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 365 (1861): 2907–2919. Bibcode:2007RSPTA.365.2907B. doi:10.1098/rsta.2007.0006. PMID 17855221. S2CID 2184491. /wiki/Bibcode_(identifier)
Barthelat, F.; Espinosa, H. D. (2007). "An Experimental Investigation of Deformation and Fracture of Nacre–Mother of Pearl". Experimental Mechanics. 47 (3): 311. doi:10.1007/s11340-007-9040-1. S2CID 16707485. /wiki/Doi_(identifier)
Barthelat, F. O.; Li, C. M.; Comi, C.; Espinosa, H. D. (2006). "Mechanical properties of nacre constituents and their impact on mechanical performance". Journal of Materials Research. 21 (8): 1977. Bibcode:2006JMatR..21.1977B. doi:10.1557/JMR.2006.0239. S2CID 4275259. /wiki/Bibcode_(identifier)
Fratzl, P.; Fratzl-Zelman, N.; Klaushofer, K.; Vogl, G.; Koller, K. (1991). "Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering". Calcified Tissue International. 48 (6): 407–13. doi:10.1007/BF02556454. PMID 2070275. S2CID 7104547. /wiki/Doi_(identifier)
Nalla, R.; Kruzic, J.; Ritchie, R. (2004). "On the origin of the toughness of mineralized tissue: microcracking or crack bridging?". Bone. 34 (5): 790–798. doi:10.1016/j.bone.2004.02.001. PMID 15121010. /wiki/Doi_(identifier)
Oyen, M. (2006). "Nanoindentation hardness of mineralized tissues". Journal of Biomechanics. 39 (14): 2699–2702. doi:10.1016/j.jbiomech.2005.09.011. PMID 16253265. /wiki/Doi_(identifier)
"A new technique for imaging Mineralized Fibrils on Bovine Trabecular Bone Fracture Surfaces by Atomic Force Microscopy" (PDF). Retrieved 2010-08-14. http://hansmalab.physics.ucsb.edu/pdf/321%20-%20Kindt,%20J.K._MRSProc._2005.pdf
Espinosa, H. D.; Rim, J. E.; Barthelat, F.; Buehler, M. J. (2009). "Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials". Progress in Materials Science. 54 (8): 1059–1100. doi:10.1016/j.pmatsci.2009.05.001. /wiki/Doi_(identifier)
Barthelat, F. (2007). "Biomimetics for next generation materials". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 365 (1861): 2907–2919. Bibcode:2007RSPTA.365.2907B. doi:10.1098/rsta.2007.0006. PMID 17855221. S2CID 2184491. /wiki/Bibcode_(identifier)
Boskey, A.; Mendelsohn, R. (2005). "Infrared spectroscopic characterization of mineralized tissues". Vibrational Spectroscopy. 38 (1–2): 107–114. doi:10.1016/j.vibspec.2005.02.015. PMC 1459415. PMID 16691288. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1459415
Kawasaki, K.; Suzuki, T.; Weiss, K. (2004). "Genetic basis for the evolution of vertebrate mineralized tissue". Proceedings of the National Academy of Sciences of the United States of America. 101 (31): 11356–11361. Bibcode:2004PNAS..10111356K. doi:10.1073/pnas.0404279101. PMC 509207. PMID 15272073. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC509207
Espinosa, H. D.; Rim, J. E.; Barthelat, F.; Buehler, M. J. (2009). "Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials". Progress in Materials Science. 54 (8): 1059–1100. doi:10.1016/j.pmatsci.2009.05.001. /wiki/Doi_(identifier)
Barthelat, F.; Tang, H.; Zavattieri, P.; Li, C.; Espinosa, H. (2007). "On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure". Journal of the Mechanics and Physics of Solids. 55 (2): 306. Bibcode:2007JMPSo..55..306B. doi:10.1016/j.jmps.2006.07.007. /wiki/Bibcode_(identifier)
pradhan, Shashindra (July 18, 2012). "Structural Hierarchy Controls Deformation Behavior of Collagen". Biomacromolecules. 13 (8): 2562–2569. doi:10.1021/bm300801a. PMID 22808993. /wiki/Doi_(identifier)
Katti, Kalpana (October 5, 2005). "Why is Nacre so strong and tough?". Materials Science and Engineering C. 26 (8): 1317–1324. doi:10.1016/j.msec.2005.08.013. https://doi.org/10.1016%2Fj.msec.2005.08.013
Barthelat, F.; Tang, H.; Zavattieri, P.; Li, C.; Espinosa, H. (2007). "On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure". Journal of the Mechanics and Physics of Solids. 55 (2): 306. Bibcode:2007JMPSo..55..306B. doi:10.1016/j.jmps.2006.07.007. /wiki/Bibcode_(identifier)
Barthelat, F. (2007). "Biomimetics for next generation materials". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 365 (1861): 2907–2919. Bibcode:2007RSPTA.365.2907B. doi:10.1098/rsta.2007.0006. PMID 17855221. S2CID 2184491. /wiki/Bibcode_(identifier)
Barthelat, F.; Tang, H.; Zavattieri, P.; Li, C.; Espinosa, H. (2007). "On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure". Journal of the Mechanics and Physics of Solids. 55 (2): 306. Bibcode:2007JMPSo..55..306B. doi:10.1016/j.jmps.2006.07.007. /wiki/Bibcode_(identifier)
Barthelat, F. (2007). "Biomimetics for next generation materials". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 365 (1861): 2907–2919. Bibcode:2007RSPTA.365.2907B. doi:10.1098/rsta.2007.0006. PMID 17855221. S2CID 2184491. /wiki/Bibcode_(identifier)
Barthelat, F.; Tang, H.; Zavattieri, P.; Li, C.; Espinosa, H. (2007). "On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure". Journal of the Mechanics and Physics of Solids. 55 (2): 306. Bibcode:2007JMPSo..55..306B. doi:10.1016/j.jmps.2006.07.007. /wiki/Bibcode_(identifier)
Barthelat, F.; Tang, H.; Zavattieri, P.; Li, C.; Espinosa, H. (2007). "On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure". Journal of the Mechanics and Physics of Solids. 55 (2): 306. Bibcode:2007JMPSo..55..306B. doi:10.1016/j.jmps.2006.07.007. /wiki/Bibcode_(identifier)
Espinosa, H. D.; Rim, J. E.; Barthelat, F.; Buehler, M. J. (2009). "Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials". Progress in Materials Science. 54 (8): 1059–1100. doi:10.1016/j.pmatsci.2009.05.001. /wiki/Doi_(identifier)
Espinosa, H. D.; Rim, J. E.; Barthelat, F.; Buehler, M. J. (2009). "Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials". Progress in Materials Science. 54 (8): 1059–1100. doi:10.1016/j.pmatsci.2009.05.001. /wiki/Doi_(identifier)
Barthelat, F. (2007). "Biomimetics for next generation materials". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 365 (1861): 2907–2919. Bibcode:2007RSPTA.365.2907B. doi:10.1098/rsta.2007.0006. PMID 17855221. S2CID 2184491. /wiki/Bibcode_(identifier)
Espinosa, H. D.; Rim, J. E.; Barthelat, F.; Buehler, M. J. (2009). "Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials". Progress in Materials Science. 54 (8): 1059–1100. doi:10.1016/j.pmatsci.2009.05.001. /wiki/Doi_(identifier)
Espinosa, H. D.; Rim, J. E.; Barthelat, F.; Buehler, M. J. (2009). "Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials". Progress in Materials Science. 54 (8): 1059–1100. doi:10.1016/j.pmatsci.2009.05.001. /wiki/Doi_(identifier)
Barthelat, F. (2007). "Biomimetics for next generation materials". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 365 (1861): 2907–2919. Bibcode:2007RSPTA.365.2907B. doi:10.1098/rsta.2007.0006. PMID 17855221. S2CID 2184491. /wiki/Bibcode_(identifier)
Barthelat, F. (2007). "Biomimetics for next generation materials". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 365 (1861): 2907–2919. Bibcode:2007RSPTA.365.2907B. doi:10.1098/rsta.2007.0006. PMID 17855221. S2CID 2184491. /wiki/Bibcode_(identifier)
Espinosa, H. D.; Rim, J. E.; Barthelat, F.; Buehler, M. J. (2009). "Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials". Progress in Materials Science. 54 (8): 1059–1100. doi:10.1016/j.pmatsci.2009.05.001. /wiki/Doi_(identifier)
Barthelat, F. (2007). "Biomimetics for next generation materials". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 365 (1861): 2907–2919. Bibcode:2007RSPTA.365.2907B. doi:10.1098/rsta.2007.0006. PMID 17855221. S2CID 2184491. /wiki/Bibcode_(identifier)
pradhan, Shashindra (July 18, 2012). "Structural Hierarchy Controls Deformation Behavior of Collagen". Biomacromolecules. 13 (8): 2562–2569. doi:10.1021/bm300801a. PMID 22808993. /wiki/Doi_(identifier)
Espinosa, H. D.; Rim, J. E.; Barthelat, F.; Buehler, M. J. (2009). "Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials". Progress in Materials Science. 54 (8): 1059–1100. doi:10.1016/j.pmatsci.2009.05.001. /wiki/Doi_(identifier)
Barthelat, F. (2007). "Biomimetics for next generation materials". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 365 (1861): 2907–2919. Bibcode:2007RSPTA.365.2907B. doi:10.1098/rsta.2007.0006. PMID 17855221. S2CID 2184491. /wiki/Bibcode_(identifier)
Hellmich, C.; Ulm, F. J. (2002). "Micromechanical Model for Ultrastructural Stiffness of Mineralized Tissues". Journal of Engineering Mechanics. 128 (8): 898. doi:10.1061/(ASCE)0733-9399(2002)128:8(898). /wiki/Doi_(identifier)
Espinosa, H. D.; Rim, J. E.; Barthelat, F.; Buehler, M. J. (2009). "Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials". Progress in Materials Science. 54 (8): 1059–1100. doi:10.1016/j.pmatsci.2009.05.001. /wiki/Doi_(identifier)
Hellmich, C.; Ulm, F. J. (2002). "Micromechanical Model for Ultrastructural Stiffness of Mineralized Tissues". Journal of Engineering Mechanics. 128 (8): 898. doi:10.1061/(ASCE)0733-9399(2002)128:8(898). /wiki/Doi_(identifier)
Hellmich, C.; Ulm, F. J. (2002). "Micromechanical Model for Ultrastructural Stiffness of Mineralized Tissues". Journal of Engineering Mechanics. 128 (8): 898. doi:10.1061/(ASCE)0733-9399(2002)128:8(898). /wiki/Doi_(identifier)
Hellmich, C.; Ulm, F. J. (2002). "Micromechanical Model for Ultrastructural Stiffness of Mineralized Tissues". Journal of Engineering Mechanics. 128 (8): 898. doi:10.1061/(ASCE)0733-9399(2002)128:8(898). /wiki/Doi_(identifier)
Hellmich, C.; Ulm, F. J. (2002). "Micromechanical Model for Ultrastructural Stiffness of Mineralized Tissues". Journal of Engineering Mechanics. 128 (8): 898. doi:10.1061/(ASCE)0733-9399(2002)128:8(898). /wiki/Doi_(identifier)
Hellmich, C.; Ulm, F. J. (2002). "Micromechanical Model for Ultrastructural Stiffness of Mineralized Tissues". Journal of Engineering Mechanics. 128 (8): 898. doi:10.1061/(ASCE)0733-9399(2002)128:8(898). /wiki/Doi_(identifier)
Espinosa, H. D.; Rim, J. E.; Barthelat, F.; Buehler, M. J. (2009). "Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials". Progress in Materials Science. 54 (8): 1059–1100. doi:10.1016/j.pmatsci.2009.05.001. /wiki/Doi_(identifier)
Barthelat, F. (2007). "Biomimetics for next generation materials". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 365 (1861): 2907–2919. Bibcode:2007RSPTA.365.2907B. doi:10.1098/rsta.2007.0006. PMID 17855221. S2CID 2184491. /wiki/Bibcode_(identifier)
Espinosa, H. D.; Rim, J. E.; Barthelat, F.; Buehler, M. J. (2009). "Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials". Progress in Materials Science. 54 (8): 1059–1100. doi:10.1016/j.pmatsci.2009.05.001. /wiki/Doi_(identifier)
Barthelat, F. (2007). "Biomimetics for next generation materials". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 365 (1861): 2907–2919. Bibcode:2007RSPTA.365.2907B. doi:10.1098/rsta.2007.0006. PMID 17855221. S2CID 2184491. /wiki/Bibcode_(identifier)
Barthelat, F. (2007). "Biomimetics for next generation materials". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 365 (1861): 2907–2919. Bibcode:2007RSPTA.365.2907B. doi:10.1098/rsta.2007.0006. PMID 17855221. S2CID 2184491. /wiki/Bibcode_(identifier)
Boskey, A.; Mendelsohn, R. (2005). "Infrared spectroscopic characterization of mineralized tissues". Vibrational Spectroscopy. 38 (1–2): 107–114. doi:10.1016/j.vibspec.2005.02.015. PMC 1459415. PMID 16691288. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1459415
Addadi, L.; Joester, D.; Nudelman, F.; Weiner, S. (2006). "Mollusk shell formation: a source of new concepts for understanding biomineralization processes". Chemistry: A European Journal. 12 (4): 980–987. doi:10.1002/chem.200500980. PMID 16315200. /wiki/Doi_(identifier)
Fratzl, P.; Fratzl-Zelman, N.; Klaushofer, K.; Vogl, G.; Koller, K. (1991). "Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering". Calcified Tissue International. 48 (6): 407–13. doi:10.1007/BF02556454. PMID 2070275. S2CID 7104547. /wiki/Doi_(identifier)
Espinosa, H. D.; Rim, J. E.; Barthelat, F.; Buehler, M. J. (2009). "Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials". Progress in Materials Science. 54 (8): 1059–1100. doi:10.1016/j.pmatsci.2009.05.001. /wiki/Doi_(identifier)
Boskey, A.; Mendelsohn, R. (2005). "Infrared spectroscopic characterization of mineralized tissues". Vibrational Spectroscopy. 38 (1–2): 107–114. doi:10.1016/j.vibspec.2005.02.015. PMC 1459415. PMID 16691288. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1459415
Espinosa, H. D.; Rim, J. E.; Barthelat, F.; Buehler, M. J. (2009). "Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials". Progress in Materials Science. 54 (8): 1059–1100. doi:10.1016/j.pmatsci.2009.05.001. /wiki/Doi_(identifier)
Currey, J.; Brear, K.; Zioupos, P. (2004). "Notch sensitivity of mammalian mineralized tissues in impact". Proceedings: Biological Sciences. 271 (1538): 517–522. doi:10.1098/rspb.2003.2634. PMC 1691617. PMID 15129962. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1691617
Espinosa, H. D.; Rim, J. E.; Barthelat, F.; Buehler, M. J. (2009). "Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials". Progress in Materials Science. 54 (8): 1059–1100. doi:10.1016/j.pmatsci.2009.05.001. /wiki/Doi_(identifier)
Barthelat, F. (2007). "Biomimetics for next generation materials". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 365 (1861): 2907–2919. Bibcode:2007RSPTA.365.2907B. doi:10.1098/rsta.2007.0006. PMID 17855221. S2CID 2184491. /wiki/Bibcode_(identifier)
Meyers, M.; Lin, A.; Chen, P.; Muyco, J. (2008). "Mechanical strength of abalone nacre: role of the soft organic layer". Journal of the Mechanical Behavior of Biomedical Materials. 1 (1): 76–85. doi:10.1016/j.jmbbm.2007.03.001. PMID 19627773. /wiki/Doi_(identifier)
"Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins" (PDF). Retrieved 2010-08-14. http://www.biochemj.org/bj/317/0059/3170059.pdf
Meyers, M.; Lin, A.; Chen, P.; Muyco, J. (2008). "Mechanical strength of abalone nacre: role of the soft organic layer". Journal of the Mechanical Behavior of Biomedical Materials. 1 (1): 76–85. doi:10.1016/j.jmbbm.2007.03.001. PMID 19627773. /wiki/Doi_(identifier)
Addadi, L.; Joester, D.; Nudelman, F.; Weiner, S. (2006). "Mollusk shell formation: a source of new concepts for understanding biomineralization processes". Chemistry: A European Journal. 12 (4): 980–987. doi:10.1002/chem.200500980. PMID 16315200. /wiki/Doi_(identifier)
Addadi, L.; Joester, D.; Nudelman, F.; Weiner, S. (2006). "Mollusk shell formation: a source of new concepts for understanding biomineralization processes". Chemistry: A European Journal. 12 (4): 980–987. doi:10.1002/chem.200500980. PMID 16315200. /wiki/Doi_(identifier)
Addadi, L.; Joester, D.; Nudelman, F.; Weiner, S. (2006). "Mollusk shell formation: a source of new concepts for understanding biomineralization processes". Chemistry: A European Journal. 12 (4): 980–987. doi:10.1002/chem.200500980. PMID 16315200. /wiki/Doi_(identifier)
Addadi, L.; Joester, D.; Nudelman, F.; Weiner, S. (2006). "Mollusk shell formation: a source of new concepts for understanding biomineralization processes". Chemistry: A European Journal. 12 (4): 980–987. doi:10.1002/chem.200500980. PMID 16315200. /wiki/Doi_(identifier)
Addadi, L.; Joester, D.; Nudelman, F.; Weiner, S. (2006). "Mollusk shell formation: a source of new concepts for understanding biomineralization processes". Chemistry: A European Journal. 12 (4): 980–987. doi:10.1002/chem.200500980. PMID 16315200. /wiki/Doi_(identifier)
Addadi, L.; Joester, D.; Nudelman, F.; Weiner, S. (2006). "Mollusk shell formation: a source of new concepts for understanding biomineralization processes". Chemistry: A European Journal. 12 (4): 980–987. doi:10.1002/chem.200500980. PMID 16315200. /wiki/Doi_(identifier)
Addadi, L.; Joester, D.; Nudelman, F.; Weiner, S. (2006). "Mollusk shell formation: a source of new concepts for understanding biomineralization processes". Chemistry: A European Journal. 12 (4): 980–987. doi:10.1002/chem.200500980. PMID 16315200. /wiki/Doi_(identifier)
Addadi, L.; Joester, D.; Nudelman, F.; Weiner, S. (2006). "Mollusk shell formation: a source of new concepts for understanding biomineralization processes". Chemistry: A European Journal. 12 (4): 980–987. doi:10.1002/chem.200500980. PMID 16315200. /wiki/Doi_(identifier)
Fratzl, P.; Fratzl-Zelman, N.; Klaushofer, K.; Vogl, G.; Koller, K. (1991). "Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering". Calcified Tissue International. 48 (6): 407–13. doi:10.1007/BF02556454. PMID 2070275. S2CID 7104547. /wiki/Doi_(identifier)
Beniash, E.; Aizenberg, J.; Addadi, L.; Weiner, S. (1997). "Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth". Proceedings of the Royal Society B: Biological Sciences. 264 (1380): 461–465. Bibcode:1997RSPSB.264..461B. doi:10.1098/rspb.1997.0066. PMC 1688267. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1688267
Mohanty, B.; Katti, K.; Katti, D. (2008). "Experimental investigation of nanomechanics of the mineral-protein interface in nacre". Mechanics Research Communications. 35 (1–2): 17–23. doi:10.1016/j.mechrescom.2007.09.006. /wiki/Doi_(identifier)
Mohanty, B.; Katti, K.; Katti, D. (2008). "Experimental investigation of nanomechanics of the mineral-protein interface in nacre". Mechanics Research Communications. 35 (1–2): 17–23. doi:10.1016/j.mechrescom.2007.09.006. /wiki/Doi_(identifier)
Barthelat, F. O.; Li, C. M.; Comi, C.; Espinosa, H. D. (2006). "Mechanical properties of nacre constituents and their impact on mechanical performance". Journal of Materials Research. 21 (8): 1977. Bibcode:2006JMatR..21.1977B. doi:10.1557/JMR.2006.0239. S2CID 4275259. /wiki/Bibcode_(identifier)
Tang, H.; Barthelat, F.; Espinosa, H. (2007). "An elasto-viscoplastic interface model for investigating the constitutive behavior of nacre". Journal of the Mechanics and Physics of Solids. 55 (7): 1410. Bibcode:2007JMPSo..55.1410T. doi:10.1016/j.jmps.2006.12.009. /wiki/Bibcode_(identifier)
Tang, H.; Barthelat, F.; Espinosa, H. (2007). "An elasto-viscoplastic interface model for investigating the constitutive behavior of nacre". Journal of the Mechanics and Physics of Solids. 55 (7): 1410. Bibcode:2007JMPSo..55.1410T. doi:10.1016/j.jmps.2006.12.009. /wiki/Bibcode_(identifier)
Bertazzo, S.; et al. (2013). "Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification". Nature Materials. 12 (6): 576–583. Bibcode:2013NatMa..12..576B. doi:10.1038/nmat3627. PMC 5833942. PMID 23603848. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833942
Miller, J. D. (2013). "Cardiovascular calcification: Orbicular origins". Nature Materials. 12 (6): 476–478. Bibcode:2013NatMa..12..476M. doi:10.1038/nmat3663. PMID 23695741. /wiki/Bibcode_(identifier)
Boskey, A.; Mendelsohn, R. (2005). "Infrared spectroscopic characterization of mineralized tissues". Vibrational Spectroscopy. 38 (1–2): 107–114. doi:10.1016/j.vibspec.2005.02.015. PMC 1459415. PMID 16691288. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1459415
Porter, A.; Nalla, R.; Minor, A.; Jinschek, J.; Kisielowski, C.; Radmilovic, V.; Kinney, J.; Tomsia, A.; Ritchie, R. (2005). "A transmission electron microscopy study of mineralization in age-induced transparent dentin". Biomaterials. 26 (36): 7650–7660. doi:10.1016/j.biomaterials.2005.05.059. PMID 16005961. /wiki/Doi_(identifier)
Espinosa, H. D.; Rim, J. E.; Barthelat, F.; Buehler, M. J. (2009). "Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials". Progress in Materials Science. 54 (8): 1059–1100. doi:10.1016/j.pmatsci.2009.05.001. /wiki/Doi_(identifier)
Wegst, Ulrike G. K.; Bai, Hao; Saiz, Eduardo; Tomsia, Antoni P.; Ritchie, Robert O. (January 2015). "Bioinspired structural materials". Nature Materials. 14 (1): 23–36. Bibcode:2015NatMa..14...23W. doi:10.1038/nmat4089. ISSN 1476-4660. PMID 25344782. S2CID 263363492. https://www.nature.com/articles/nmat4089
Espinosa, H. D.; Rim, J. E.; Barthelat, F.; Buehler, M. J. (2009). "Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials". Progress in Materials Science. 54 (8): 1059–1100. doi:10.1016/j.pmatsci.2009.05.001. /wiki/Doi_(identifier)
Hua, Mutian; Wu, Shuwang; Ma, Yanfei; Zhao, Yusen; Chen, Zilin; Frenkel, Imri; Strzalka, Joseph; Zhou, Hua; Zhu, Xinyuan; He, Ximin (February 2021). "Strong tough hydrogels via the synergy of freeze-casting and salting out". Nature. 590 (7847): 594–599. Bibcode:2021Natur.590..594H. doi:10.1038/s41586-021-03212-z. ISSN 1476-4687. OSTI 1774154. PMID 33627812. S2CID 232048202. https://www.nature.com/articles/s41586-021-03212-z
Frazier, William E. (2014-06-01). "Metal Additive Manufacturing: A Review". Journal of Materials Engineering and Performance. 23 (6): 1917–1928. Bibcode:2014JMEP...23.1917F. doi:10.1007/s11665-014-0958-z. ISSN 1544-1024. https://doi.org/10.1007%2Fs11665-014-0958-z
Espinosa, H. D.; Rim, J. E.; Barthelat, F.; Buehler, M. J. (2009). "Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials". Progress in Materials Science. 54 (8): 1059–1100. doi:10.1016/j.pmatsci.2009.05.001. /wiki/Doi_(identifier)
Espinosa, H. D.; Rim, J. E.; Barthelat, F.; Buehler, M. J. (2009). "Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials". Progress in Materials Science. 54 (8): 1059–1100. doi:10.1016/j.pmatsci.2009.05.001. /wiki/Doi_(identifier)
Espinosa, H. D.; Rim, J. E.; Barthelat, F.; Buehler, M. J. (2009). "Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials". Progress in Materials Science. 54 (8): 1059–1100. doi:10.1016/j.pmatsci.2009.05.001. /wiki/Doi_(identifier)
Espinosa, H. D.; Rim, J. E.; Barthelat, F.; Buehler, M. J. (2009). "Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials". Progress in Materials Science. 54 (8): 1059–1100. doi:10.1016/j.pmatsci.2009.05.001. /wiki/Doi_(identifier)