All Banach spaces and Fréchet spaces are F-spaces. In particular, a Banach space is an F-space with an additional requirement that d ( a x , 0 ) = | a | d ( x , 0 ) . {\displaystyle d(ax,0)=|a|d(x,0).} 1
The Lp spaces can be made into F-spaces for all p ≥ 0 {\displaystyle p\geq 0} and for p ≥ 1 {\displaystyle p\geq 1} they can be made into locally convex and thus Fréchet spaces and even Banach spaces.
L 1 2 [ 0 , 1 ] {\displaystyle L^{\frac {1}{2}}[0,\,1]} is an F-space. It admits no continuous seminorms and no continuous linear functionals — it has trivial dual space.
Let W p ( D ) {\displaystyle W_{p}(\mathbb {D} )} be the space of all complex valued Taylor series f ( z ) = ∑ n ≥ 0 a n z n {\displaystyle f(z)=\sum _{n\geq 0}a_{n}z^{n}} on the unit disc D {\displaystyle \mathbb {D} } such that ∑ n | a n | p < ∞ {\displaystyle \sum _{n}\left|a_{n}\right|^{p}<\infty } then for 0 < p < 1 , {\displaystyle 0<p<1,} W p ( D ) {\displaystyle W_{p}(\mathbb {D} )} are F-spaces under the p-norm: ‖ f ‖ p = ∑ n | a n | p ( 0 < p < 1 ) . {\displaystyle \|f\|_{p}=\sum _{n}\left|a_{n}\right|^{p}\qquad (0<p<1).}
In fact, W p {\displaystyle W_{p}} is a quasi-Banach algebra. Moreover, for any ζ {\displaystyle \zeta } with | ζ | ≤ 1 {\displaystyle |\zeta |\leq 1} the map f ↦ f ( ζ ) {\displaystyle f\mapsto f(\zeta )} is a bounded linear (multiplicative functional) on W p ( D ) . {\displaystyle W_{p}(\mathbb {D} ).}
Theorem23 (Klee (1952))—Let d {\displaystyle d} be any4 metric on a vector space X {\displaystyle X} such that the topology τ {\displaystyle \tau } induced by d {\displaystyle d} on X {\displaystyle X} makes ( X , τ ) {\displaystyle (X,\tau )} into a topological vector space. If ( X , d ) {\displaystyle (X,d)} is a complete metric space then ( X , τ ) {\displaystyle (X,\tau )} is a complete topological vector space.
The open mapping theorem implies that if τ and τ 2 {\displaystyle \tau {\text{ and }}\tau _{2}} are topologies on X {\displaystyle X} that make both ( X , τ ) {\displaystyle (X,\tau )} and ( X , τ 2 ) {\displaystyle \left(X,\tau _{2}\right)} into complete metrizable topological vector spaces (for example, Banach or Fréchet spaces) and if one topology is finer or coarser than the other then they must be equal (that is, if τ ⊆ τ 2 or τ 2 ⊆ τ then τ = τ 2 {\displaystyle \tau \subseteq \tau _{2}{\text{ or }}\tau _{2}\subseteq \tau {\text{ then }}\tau =\tau _{2}} ).5
Dunford N., Schwartz J.T. (1958). Linear operators. Part I: general theory. Interscience publishers, inc., New York. p. 59 ↩
Schaefer & Wolff 1999, p. 35. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135 ↩
Klee, V. L. (1952). "Invariant metrics in groups (solution of a problem of Banach)" (PDF). Proc. Amer. Math. Soc. 3 (3): 484–487. doi:10.1090/s0002-9939-1952-0047250-4. https://www.ams.org/journals/proc/1952-003-03/S0002-9939-1952-0047250-4/S0002-9939-1952-0047250-4.pdf ↩
Not assume to be translation-invariant. ↩
Trèves 2006, pp. 166–173. - Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322. https://search.worldcat.org/oclc/853623322 ↩
Husain & Khaleelulla 1978, p. 14. - Husain, Taqdir; Khaleelulla, S. M. (1978). Barrelledness in Topological and Ordered Vector Spaces. Lecture Notes in Mathematics. Vol. 692. Berlin, New York, Heidelberg: Springer-Verlag. ISBN 978-3-540-09096-0. OCLC 4493665. https://search.worldcat.org/oclc/4493665 ↩
Husain & Khaleelulla 1978, p. 15. - Husain, Taqdir; Khaleelulla, S. M. (1978). Barrelledness in Topological and Ordered Vector Spaces. Lecture Notes in Mathematics. Vol. 692. Berlin, New York, Heidelberg: Springer-Verlag. ISBN 978-3-540-09096-0. OCLC 4493665. https://search.worldcat.org/oclc/4493665 ↩