Two-photon excitation fluorescence microscopy has similarities to other confocal laser microscopy techniques such as laser scanning confocal microscopy and Raman microscopy. These techniques use focused laser beams scanned in a raster pattern to generate images, and both have an optical sectioning effect. Unlike confocal microscopes, multiphoton microscopes do not contain pinhole apertures that give confocal microscopes their optical sectioning quality. The optical sectioning produced by multiphoton microscopes is a result of the point spread function of the excitation.
The concept of two-photon excitation is based on the idea that two photons, of comparably lower photon energy than needed for one-photon excitation, can also excite a fluorophore in one quantum event. Each photon carries approximately half the energy necessary to excite the molecule. The emitted photon is at a higher energy (shorter wavelength) than either of the two exciting photons. The probability of the near-simultaneous absorption of two photons is extremely low. Therefore, a high peak flux of excitation photons is typically required, usually generated by femtosecond pulsed laser. For example, the same average laser power but without pulsing results in no detectable fluorescence compared to fluorescence generated by the pulsed laser via the two-photon effect.
The longer wavelength, lower energy (typically infrared) excitation lasers of multiphoton microscopes are well-suited to use in imaging live cells as they cause less damage than the short-wavelength lasers typically used for single-photon excitation, so living tissues may be observed for longer periods with fewer toxic effects.
The most commonly used fluorophores have excitation spectra in the 400–500 nm range, whereas the laser used to excite the two-photon fluorescence lies in the ~700–1100 nm (infrared) range produced by Ti-sapphire lasers. If the fluorophore absorbs two infrared photons simultaneously, it will absorb enough energy to be raised into the excited state. The fluorophore will then emit a single photon with a wavelength that depends on the type of fluorophore used (typically in the visible spectrum). Because two photons are absorbed during the excitation of the fluorophore, the probability of fluorescent emission from the fluorophores increases quadratically with the excitation intensity. Therefore, much more two-photon fluorescence is generated where the laser beam is tightly focused than where it is more diffuse. Effectively, excitation is restricted to the tiny focal volume (~1 femtoliter), resulting in a high degree of rejection of out-of-focus objects. This localization of excitation is the key advantage compared to single-photon excitation microscopes, which need to employ elements such as pinholes to reject out-of-focus fluorescence. The fluorescence from the sample is then collected by a high-sensitivity detector, such as a photomultiplier tube. This observed light intensity becomes one pixel in the eventual image; the focal point is scanned throughout a desired region of the sample to form all the pixels of the image.
There are several caveats to using two-photon microscopy: The pulsed lasers needed for two-photon excitation are much more expensive than the continuous wave (CW) lasers used in confocal microscopy. The two-photon absorption spectrum of a molecule may vary significantly from its one-photon counterpart. Higher-order photodamage becomes a problem and bleaching scales with the square of the laser power, whereas it is linear for single-photon (confocal). For very thin objects such as isolated cells, single-photon (confocal) microscopes can produce images with higher optical resolution due to their shorter excitation wavelengths. In scattering tissue, on the other hand, the superior optical sectioning and light detection capabilities of the two-photon microscope result in better performance.
Two-photon microscopy has been involved in numerous fields including: physiology, neurobiology, embryology and tissue engineering. Even thin, nearly transparent tissues (such as skin cells) have been visualized with clear detail due to this technique. Two-photon microscopy's high speed imaging capabilities may also be utilized in noninvasive optical biopsy. Two-photon microscopy has been aptly used for producing localized chemical reactions, an effect that has been used also for two-photon-based lithography. Using two-photon fluorescence and second-harmonic generation–based microscopy, it was shown that organic porphyrin-type molecules can have different transition dipole moments for two-photon fluorescence and second harmonic generation, which are otherwise thought to occur from the same transition dipole moment. Non-degenerative two-photon excitation, or using 2 photons of unequal wavelengths, was shown to increase the fluorescence of all tested small molecules and fluorescent proteins.
2PEF has also been used in visualization of difficult-to-access cell types, especially in regards to kidney cells. It has been used in better understanding fluid dynamics and filtration.
Currently, two-photon microscopy is widely used to image the live firing of neurons in model organisms including fruit flies (Drosophila melanogaster), rats, songbirds, primates, ferrets, mice (Mus musculus), zebrafish. The animals are typically head-fixed due to the size of the microscope and scan devices, but also miniatured microscopes are being developed that enable imaging of neurons in the moving and freely behaving animals.
Simultaneous absorption of three or more photons is also possible, allowing for higher-order multiphoton excitation microscopy. So-called "three-photon excitation fluorescence microscopy" (3PEF) is the most used technique after 2PEF, to which it is complementary. Localized isomerization of photoswitchable drugs in vivo using three-photon excitation has also been reported.
Several green, red and NIR emitting dyes (probes and reactive labels) with extremely high 2-photon absorption cross-sections have been reported. Due to the donor-acceptor-donor type structure, squaraine dyes such as Seta-670, Seta-700 and Seta-660 exhibit very high 2-photon absorption (2PA) efficiencies in comparison to other dyes, SeTau-647 and SeTau-665, a new type of squaraine-rotaxane, exhibit extremely high two-photon action cross-sections of up to 10,000 GM in the near IR region, unsurpassed by any other class of organic dyes.
Denk, Winifried; Strickler, James H.; Webb, Watt W. (6 April 1990). "Two-Photon Laser Scanning Fluorescence Microscopy". Science. 248 (4951): 73–76. Bibcode:1990Sci...248...73D. doi:10.1126/science.2321027. PMID 2321027. S2CID 18431535. /wiki/Bibcode_(identifier)
Stockert, Juan Carlos; Blazquez-Castro, Alfonso (2017). "Non-linear Optics". Fluorescence Microscopy in Life Sciences. pp. 642–686. doi:10.2174/9781681085180117010023. ISBN 978-1-68108-518-0. 978-1-68108-518-0
Goeppert-Mayer M. (1931). "Über Elementarakte mit zwei Quantensprüngen". Annals of Physics. 9 (3): 273–95. Bibcode:1931AnP...401..273G. doi:10.1002/andp.19314010303. https://doi.org/10.1002%2Fandp.19314010303
Kaiser, W.; Garrett, C. (September 1961). "Two-Photon Excitation in CaF2:Eu2+". Physical Review Letters. 7 (6): 229–231. Bibcode:1961PhRvL...7..229K. doi:10.1103/PhysRevLett.7.229. /wiki/Bibcode_(identifier)
Abella, I. D. (December 1962). "Optical Double-Photon Absorption in Cesium Vapor". Physical Review Letters. 9 (11): 453–455. Bibcode:1962PhRvL...9..453A. doi:10.1103/PhysRevLett.9.453. /wiki/Bibcode_(identifier)
Denk, Winifried; Strickler, James H.; Webb, Watt W. (6 April 1990). "Two-Photon Laser Scanning Fluorescence Microscopy". Science. 248 (4951): 73–76. Bibcode:1990Sci...248...73D. doi:10.1126/science.2321027. PMID 2321027. S2CID 18431535. /wiki/Bibcode_(identifier)
US 5034613 "Two-photon laser microscopy." https://worldwide.espacenet.com/textdoc?DB=EPODOC&IDX=US5034613
Helmchen F.; Denk W. (2005). "Deep tissue two-photon microscopy". Nat Methods. 2 (12): 932–40. doi:10.1038/nmeth818. PMID 16299478. S2CID 3339971. /wiki/Doi_(identifier)
Denk W.; Delaney K. (1994). "Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy". J Neurosci Methods. 54 (2): 151–62. doi:10.1016/0165-0270(94)90189-9. PMID 7869748. S2CID 3772937. /wiki/Doi_(identifier)
Masters BR.; So PTC; Gratton E. (1997). "Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin". Biophysical Journal. 72 (6): 2405–2412. Bibcode:1997BpJ....72.2405M. doi:10.1016/s0006-3495(97)78886-6. PMC 1184440. PMID 9168018. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1184440
Bewersdorf, Jörg; Pick, Rainer; Hell, Stefan W. (1 May 1998). "Multifocal multiphoton microscopy". Optics Letters. 23 (9): 655–657. Bibcode:1998OptL...23..655B. doi:10.1364/ol.23.000655. PMID 18087301. S2CID 17549598. /wiki/Bibcode_(identifier)
Denk W.; Delaney K. (1994). "Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy". J Neurosci Methods. 54 (2): 151–62. doi:10.1016/0165-0270(94)90189-9. PMID 7869748. S2CID 3772937. /wiki/Doi_(identifier)
Khadria A, Coene Y, Gawel P, Roche C, Clays K, Anderson HL (2017). "Push–pull pyropheophorbides for nonlinear optical imaging". Organic and Biomolecular Chemistry. 15 (4): 947–956. doi:10.1039/C6OB02319C. PMID 28054076. S2CID 3540505. https://ora.ox.ac.uk/objects/uuid:e885d41b-c569-4239-9f7d-25cf640de228
Reeve JE, Corbett AD, Boczarow I, Wilson T, Bayley H, Anderson HL (2012). "Probing the Orientational Distribution of Dyes in Membranes through Multiphoton Microscopy". Biophysical Journal. 103 (5): 907–917. Bibcode:2012BpJ...103..907R. doi:10.1016/j.bpj.2012.08.003. PMC 3433607. PMID 23009840. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3433607
Sadegh, Sanaz; Yang, Mu-Han; Ferri, Christopher G. L.; Thunemann, Martin; Saisan, Payam A.; Wei, Zhe; Rodriguez, Erik A.; Adams, Stephen R.; Kiliç, Kivilcim; Boas, David A.; Sakadžić, Sava; Devor, Anna; Fainman, Yeshaiahu (18 September 2019). "Efficient non-degenerate two-photon excitation for fluorescence microscopy". Optics Express. 27 (20): 28022–28035. Bibcode:2019OExpr..2728022S. doi:10.1364/OE.27.028022. PMC 6825618. PMID 31684560. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6825618
Paoli, John; Smedh, Maria; Ericson, Marica B. (September 2009). "Multiphoton Laser Scanning Microscopy—A Novel Diagnostic Method for Superficial Skin Cancers". Seminars in Cutaneous Medicine and Surgery. 28 (3): 190–195. doi:10.1016/j.sder.2009.06.007. PMID 19782943. /wiki/Doi_(identifier)
Tanaka, Koji; Toiyama, Yuji; Okugawa, Yoshinaga; Okigami, Masato; Inoue, Yasuhiro; Uchida, Keiichi; Araki, Toshimitsu; Mohri, Yasuhiko; Mizoguchi, Akira; Kusunoki, Masato (15 May 2014). "In vivo optical imaging of cancer metastasis using multiphoton microscopy: a short review". American Journal of Translational Research. 6 (3): 179–187. PMC 4058302. PMID 24936213. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4058302
Squirrell, Jayne M.; Wokosin, David L.; White, John G.; Bavister, Barry D. (August 1999). "Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability". Nature Biotechnology. 17 (8): 763–767. doi:10.1038/11698. ISSN 1546-1696. PMC 5087329. PMID 10429240. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087329
Diaspro, Alberto; Chirico, Giuseppe; Collini, Maddalena (May 2005). "Two-photon fluorescence excitation and related techniques in biological microscopy". Quarterly Reviews of Biophysics. 38 (2): 97–166. doi:10.1017/S0033583505004129. ISSN 1469-8994. PMID 16478566. S2CID 33514441. https://www.cambridge.org/core/journals/quarterly-reviews-of-biophysics/article/abs/twophoton-fluorescence-excitation-and-related-techniques-in-biological-microscopy/DBA4A3240D635730F5C9F59647D9974F
Ashworth, S. L.; Sandoval, R. M.; Tanner, G. A.; Molitoris, B. A. (2007-08-02). "Two-photon microscopy: Visualization of kidney dynamics". Kidney International. 72 (4): 416–421. doi:10.1038/sj.ki.5002315. ISSN 0085-2538. PMID 17538570. https://doi.org/10.1038%2Fsj.ki.5002315
Máthé, Domokos; Szalay, Gergely; Cseri, Levente; Kis, Zoltán; Pályi, Bernadett; Földes, Gábor; Kovács, Noémi; Fülöp, Anna; Szepesi, Áron; Hajdrik, Polett; Csomos, Attila; Zsembery, Ákos; Kádár, Kristóf; Katona, Gergely; Mucsi, Zoltán; Rózsa, Balázs József; Kovács, Ervin (Jul 2024). "Monitoring correlates of SARS-CoV-2 infection in cell culture using a two-photon-active calcium-sensitive dye". Cellular & Molecular Biology Letters. 29 (1): 105. doi:10.1186/s11658-024-00619-0. PMC 11264913. PMID 39030477. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264913
Grienberger, Christine; Konnerth, Arthur (2012). "Imaging calcium in neurons". Neuron. 73 (5): 862–885. doi:10.1016/j.neuron.2012.02.011. PMID 22405199. https://doi.org/10.1016%2Fj.neuron.2012.02.011
Svoboda, Karel; Yasuda, Ryohei (June 2006). "Principles of Two-Photon Excitation Microscopy and Its Applications to Neuroscience". Neuron. 50 (6): 823–839. doi:10.1016/j.neuron.2006.05.019. PMID 16772166. S2CID 7278880. https://doi.org/10.1016%2Fj.neuron.2006.05.019
Chiovini, Balázs; Pálfi, Dénes; Majoros, Myrtill; Juhász, Gábor; Szalay, Gergely; Katona, Gergely; Szőri, Milán; Frigyesi, Orsolya; Lukácsné Haveland, Csilla; Szabó, Gábor; Erdélyi, Ferenc; Máté, Zoltán; Szadai, Zoltán; Madarász, Miklós; Dékány, Miklós; Csizmadia G., Imre; Kovács, Ervin; Rózsa, Balázs; Mucsi, Zoltán (June 2021). "Theoretical Design, Synthesis, and In Vitro Neurobiological Applications of a Highly Efficient Two-Photon Caged GABA Validated on an Epileptic Case". ACS Omega. 6 (23): 15029–15045. doi:10.1021/acsomega.1c01164. PMC 8210458. https://pubs.acs.org/doi/10.1021/acsomega.1c01164
Izquierdo-Serra, Mercè; Gascón-Moya, Marta; Hirtz, Jan J.; Pittolo, Silvia; Poskanzer, Kira E.; Ferrer, Èric; Alibés, Ramon; Busqué, Félix; Yuste, Rafael; Hernando, Jordi; Gorostiza, Pau (2014-06-18). "Two-Photon Neuronal and Astrocytic Stimulation with Azobenzene-Based Photoswitches". Journal of the American Chemical Society. 136 (24): 8693–8701. doi:10.1021/ja5026326. ISSN 0002-7863. PMC 4096865. PMID 24857186. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096865
Pittolo, Silvia; Lee, Hyojung; Lladó, Anna; Tosi, Sébastien; Bosch, Miquel; Bardia, Lídia; Gómez-Santacana, Xavier; Llebaria, Amadeu; Soriano, Eduardo; Colombelli, Julien; Poskanzer, Kira E.; Perea, Gertrudis; Gorostiza, Pau (2019-07-02). "Reversible silencing of endogenous receptors in intact brain tissue using 2-photon pharmacology". Proceedings of the National Academy of Sciences. 116 (27): 13680–13689. Bibcode:2019PNAS..11613680P. doi:10.1073/pnas.1900430116. ISSN 0027-8424. PMC 6613107. PMID 31196955. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6613107
Sabatini, Bernardo; Tian, Lin (2020). "Neuromodulator Dynamics In Vivo with Genetically Encoded Indicators". Neuron. 108 (1): 17–32. doi:10.1016/j.neuron.2020.09.036. PMID 33058762. https://doi.org/10.1016%2Fj.neuron.2020.09.036
Benninger, Richard K.P.; Piston, David W. (June 2013). "Two-Photon Excitation Microscopy for the Study of Living Cells and Tissues". Current Protocols in Cell Biology. 59 (1): Unit 4.11.1–24. doi:10.1002/0471143030.cb0411s59. PMC 4004770. PMID 23728746. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4004770
Huang, Cheng; Maxey, Jessica R.; Sinha, Supriyo; Savall, Joan; Gong, Yiyang; Schnitzer, Mark J. (December 2018). "Long-term optical brain imaging in live adult fruit flies". Nature Communications. 9 (1): 872. Bibcode:2018NatCo...9..872H. doi:10.1038/s41467-018-02873-1. PMC 5830414. PMID 29491443. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5830414
Demas, Jeffrey; Manley, Jason; Tejera, Frank; Barber, Kevin; Kim, Hyewon; Traub, Francisca Martínez; Chen, Brandon; Vaziri, Alipasha (September 2021). "High-speed, cortex-wide volumetric recording of neuroactivity at cellular resolution using light beads microscopy". Nature Methods. 18 (9): 1103–1111. doi:10.1038/s41592-021-01239-8. PMC 8958902. PMID 34462592. S2CID 237366015. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8958902
Helmchen, Fritjof; Fee, Michale; Tank, David; Denk, Winfried (2001). "A Miniature Head-Mounted Two-Photon Microscope: High-Resolution Brain Imaging in Freely Moving Animals". Neuron. 31 (6): 903–912. doi:10.1016/S0896-6273(01)00421-4. PMID 11580892. https://doi.org/10.1016%2FS0896-6273%2801%2900421-4
Zong W, Obenhaus HA, Skytøen ER, Eneqvist H, de Jong NL, Vale R; et al. (2022). "Large-scale two-photon calcium imaging in freely moving mice". Cell. 185 (7): 1240–1256.e30. doi:10.1016/j.cell.2022.02.017. PMC 8970296. PMID 35305313.{{cite journal}}: CS1 maint: multiple names: authors list (link)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8970296
Xu, C; Zipfel, W; Shear, J B; Williams, R M; Webb, W W (1 October 1996). "Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy". Proceedings of the National Academy of Sciences of the United States of America. 93 (20): 10763–10768. Bibcode:1996PNAS...9310763X. doi:10.1073/pnas.93.20.10763. PMC 38229. PMID 8855254. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC38229
Sortino, Rosalba; Cunquero, Marina; Castro-Olvera, Gustavo; Gelabert, Ricard; Moreno, Miquel; Riefolo, Fabio; Matera, Carlo; Fernàndez-Castillo, Noèlia; Agnetta, Luca; Decker, Michael; Lluch, José Maria; Hernando, Jordi; Loza-Alvarez, Pablo; Gorostiza, Pau (2023-10-12). "Three-Photon Infrared Stimulation of Endogenous Neuroreceptors in Vivo". Angewandte Chemie International Edition. 62 (51): e202311181. doi:10.1002/anie.202311181. hdl:2445/203764. ISSN 1433-7851. PMID 37823736. https://doi.org/10.1002%2Fanie.202311181
Podgorski, Kaspar; Terpetschnig, Ewald; Klochko, Oleksii P.; Obukhova, Olena M.; Haas, Kurt (14 December 2012). "Ultra-Bright and -Stable Red and Near-Infrared Squaraine Fluorophores for In Vivo Two-Photon Imaging". PLOS ONE. 7 (12): e51980. Bibcode:2012PLoSO...751980P. doi:10.1371/journal.pone.0051980. PMC 3522634. PMID 23251670. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522634
Podgorski, Kaspar; Terpetschnig, Ewald; Klochko, Oleksii P.; Obukhova, Olena M.; Haas, Kurt (14 December 2012). "Ultra-Bright and -Stable Red and Near-Infrared Squaraine Fluorophores for In Vivo Two-Photon Imaging". PLOS ONE. 7 (12): e51980. Bibcode:2012PLoSO...751980P. doi:10.1371/journal.pone.0051980. PMC 3522634. PMID 23251670. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522634
Liu, Lingzhi; Shao, Mei; Dong, Xiaohu; Yu, Xuefeng; Liu, Zhihong; He, Zhike; Wang, Ququan (15 October 2008). "Homogeneous Immunoassay Based on Two-Photon Excitation Fluorescence Resonance Energy Transfer". Analytical Chemistry. 80 (20): 7735–7741. doi:10.1021/ac801106w. PMID 18800850. /wiki/Doi_(identifier)
Przhonska, Olga V.; Webster, Scott; Padilha, Lazaro A.; Hu, Honghua; Kachkovski, Alexey D.; Hagan, David J.; Van Stryland, Eric W. (2010). "Two-Photon Absorption in Near-IR Conjugated Molecules: Design Strategy and Structure–Property Relations". Advanced Fluorescence Reporters in Chemistry and Biology I. Springer Series on Fluorescence. Vol. 8. pp. 105–147. doi:10.1007/978-3-642-04702-2_4. ISBN 978-3-642-04700-8. 978-3-642-04700-8
Podgorski, Kaspar; Terpetschnig, Ewald; Klochko, Oleksii P.; Obukhova, Olena M.; Haas, Kurt (14 December 2012). "Ultra-Bright and -Stable Red and Near-Infrared Squaraine Fluorophores for In Vivo Two-Photon Imaging". PLOS ONE. 7 (12): e51980. Bibcode:2012PLoSO...751980P. doi:10.1371/journal.pone.0051980. PMC 3522634. PMID 23251670. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522634