The common octopus hunts at dusk. Crabs, crayfish, and bivalve mollusks (such as cockles) are preferred, although the octopus eats almost anything it can catch. It is able to change colour to blend in with its surroundings, and is able to jump upon any unwary prey that strays across its path. Using its beak, it is able to break into the shells of shelled mollusks. It also possesses venom to subdue its prey.
They have evolved to have large nervous systems and brains. An individual has about 500 million neurons in its body, almost comparable to dogs. They are intelligent enough to distinguish brightness, navigate mazes, recognize individual people, learn how to unscrew a jar or raid lobster traps. They have also been observed keeping "gardens", in which they collect various marine plant life and algae, alongside collections of shells and rocks; this behavior may have inspired the 1969 Beatles title, "Octopus' Garden". O. vulgaris was the first invertebrate animal protected by the Animals (Scientific Procedures) Act 1986 in the UK. Training experiments have shown the common octopus can distinguish the brightness, size, shape, and horizontal or vertical orientation of objects.
The common octopus has world wide distribution in tropical, subtropical and temperate waters throughout the world. They prefer the floor of relatively shallow, rocky, coastal waters, often no deeper than 200 m (660 feet). Although they prefer around 36 grams per liter (0.0013 lb/cu in), salinity throughout their global habitat is found to be between roughly 30 and 45 grams per liter (0.0011 and 0.0016 lb/cu in). They are exposed to a wide variety of temperatures in their environments, but their preferred temperature ranges from about 15 to 16 °C (59 to 61 °F). In especially warm seasons, the octopus can often be found deeper than usual to escape the warmer layers of water. In moving vertically throughout the water, the octopus is subjected to various pressures and temperatures, which affect the concentration of oxygen available in the water. This can be understood through Henry's law, which states that the concentration of a gas in a substance is proportional to pressure and solubility, which is influenced by temperature. These various discrepancies in oxygen availability introduce a requirement for regulation methods.
Primarily, the octopus situates itself in a shelter where a minimal amount of its body is presented to the external water. When it does move, most of the time it is along the ocean or sea floor, in which case the underside of the octopus is still obscured. This crawling increases metabolic demands greatly, requiring they increase their oxygen intake by roughly 2.4 times the amount required for a resting octopus. This increased demand is met by an increase in the stroke volume of the octopus' heart.
The octopus does sometimes swim throughout the water, exposing itself completely. In doing so, it uses a jet mechanism that involves creating a much higher pressure in its mantle cavity that allows it to propel itself through the water. As the common octopus' heart and gills are located within its mantle, this high pressure also constricts and puts constraints on the various vessels that are returning blood to the heart. Ultimately, this creates circulation issues and is not a sustainable form of transportation, as the octopus cannot attain an oxygen intake that can balance the metabolic demands of maximum exertion.
The structure of the octopus' gills allows for a high amount of oxygen uptake; up to 65% in water at 20 °C (68 °F). The thin skin of the octopus accounted for a large portion of oxygen uptake in an in-vitro study; the estimate suggests around 41% of all oxygen absorption is through the skin when at rest. This number is affected by the activity of the animal – the oxygen uptake increases when the octopus is exercising due to its entire body being constantly exposed to water, but the total amount of oxygen absorption through skin is actually decreased to 33% as a result of the metabolic cost of swimming. When the animal is curled up after eating, its absorption through its skin can drop to 3% of its total oxygen uptake. The octopus' respiratory pigment, hemocyanin, also assists in increasing oxygen uptake. Octopuses can maintain a constant oxygen uptake even when oxygen concentrations in the water decrease to around 3.5 kPa (0.51 psi) or 31.6% saturation (standard deviation 8.3%). If oxygen saturation in sea water drops to about 1–10% it can be fatal for Octopus vulgaris depending on the weight of the animal and the water temperature. Ventilation may increase to pump more water carrying oxygen across the gills but due to receptors found on the gills the energy use and oxygen uptake remains at a stable rate. The high percent of oxygen extraction allows for energy saving and benefits for living in an area of low oxygen concentration.
Water is pumped into the mantle cavity of the octopus, where it comes into contact with the internal gills. The water has a high concentration of oxygen compared to the blood returning from the veins, so oxygen diffuses into the blood. The tissues and muscles of the octopus use oxygen and release carbon dioxide when breaking down glucose in the Krebs cycle. The carbon dioxide then dissolves into the blood or combines with water to form carbonic acid, which decreases blood pH. The Bohr effect explains why oxygen concentrations are lower in venous blood than arterial blood and why oxygen diffuses into the bloodstream. The rate of diffusion is affected by the distance the oxygen has to travel from the water to the bloodstream as indicated by Fick's laws of diffusion. Fick's laws explain why the gills of the octopus contain many small folds that are highly vascularized. They increase surface area, thus also increase the rate of diffusion. The capillaries that line the folds of the gill epithelium have a very thin tissue barrier (10 μm), which allows for fast, easy diffusion of the oxygen into the blood. In situations where the partial pressure of oxygen in the water is low, diffusion of oxygen into the blood is reduced, Henry's law can explain this phenomenon. The law states that at equilibrium, the partial pressure of oxygen in water will be equal to that in air; but the concentrations will differ due to the differing solubility. This law explains why O. vulgaris has to alter the amount of water cycled through its mantle cavity as the oxygen concentration in water changes.
The gills are in direct contact with water – carrying more oxygen than the blood – that has been brought into the mantle cavity of the octopus. Gill capillaries are quite small and abundant, which creates an increased surface area that water can come into contact with, thus resulting in enhanced diffusion of oxygen into the blood. Some evidence indicates that lamellae and vessels within the lamellae on the gills contract to aid in propelling blood through the capillaries.
The octopus has three hearts, one main two-chambered heart charged with sending oxygenated blood to the body and two smaller branchial hearts, one next to each set of gills. The circulatory circuit sends oxygenated blood from the gills to the atrium of the systemic heart, then to its ventricle which pumps this blood to the rest of the body. Deoxygenated blood from the body goes to the branchial hearts which pump the blood across the gills to oxygenate it, and then the blood flows back to the systemic atrium for the process to begin again. Three aortae leave the systemic heart, two minor ones (the abdominal aorta and the gonadal aorta) and one major one, the dorsal aorta which services most of the body. The octopus also has large blood sinuses around its gut and behind its eyes that function as reserves in times of physiologic stress.
The octopus' heart rate does not change significantly with exercise, though temporary cardiac arrest of the systemic heart can be induced by oxygen debt, almost any sudden stimulus, or mantle pressure during jet propulsion. Its only compensation for exertion is through an increase in stroke volume of up to three times by the systemic heart, which means it suffers an oxygen debt with almost any rapid movement. The octopus is, however, able to control how much oxygen it pulls out of the water with each breath using receptors on its gills, allowing it to keep its oxygen uptake constant over a range of oxygen pressures in the surrounding water. The three hearts are also temperature and oxygen dependent and the beat rhythm of the three hearts are generally in phase with the two branchial hearts beating together followed by the systemic heart. The Frank–Starling law also contributes to overall heart function, through contractility and stroke volume, since the total volume of blood vessels must be maintained, and must be kept relatively constant within the system for the heart to function properly.
The blood of the octopus is composed of copper-rich hemocyanin, which is less efficient than the iron-rich hemoglobin of vertebrates, thus does not increase oxygen affinity to the same degree. Oxygenated hemocyanin in the arteries binds to CO2, which is then released when the blood in the veins is deoxygenated. The release of CO2 into the blood causes it to acidify by forming carbonic acid. The Bohr effect explains that carbon dioxide concentrations affect the blood pH and the release or intake of oxygen. The Krebs cycle uses the oxygen from the blood to break down glucose in active tissues or muscles and releases carbon dioxide as a waste product, which leads to more oxygen being released. Oxygen released into the tissues or muscles creates deoxygenated blood, which returns to the gills in veins. The two brachial hearts of the octopus pump blood from the veins through the gill capillaries. The newly oxygenated blood drains from the gill capillaries into the systemic heart, where it is then pumped back throughout the body.
Blood volume in the octopus' body is about 3.5% of its body weight but the blood's oxygen-carrying capacity is only about 4 volume percent. This contributes to their susceptibility to the oxygen debt mentioned before. Shadwick and Nilsson concluded that the octopus circulatory system is "fundamentally unsuitable for high physiologic performance". Since the binding agent is found within the plasma and not the blood cells, a limit exists to the oxygen uptake that the octopus can experience. If it were to increase the hemocyanin within its blood stream, the fluid would become too viscous for the myogenic hearts to pump. Poiseuille's law explains the rate of flow of the bulk fluid throughout the entire circulatory system through the differences of blood pressure and vascular resistance.
Like those of vertebrates, octopus blood vessels are very elastic, with a resilience of 70% at physiologic pressures. They are primarily made of an elastic fiber called octopus arterial elastomer, with stiffer collagen fibers recruited at high pressure to help the vessel maintain its shape without over-stretching. Shadwick and Nilsson theorized that all octopus blood vessels may use smooth-muscle contractions to help move blood through the body, which would make sense in the context of them living under water with the attendant pressure.
The elasticity and contractile nature of the octopus aorta serves to smooth out the pulsing nature of blood flow from the heart as the pulses travel the length of the vessel, while the vena cava serves in an energy-storage capacity. Stroke volume of the systemic heart changes inversely with the difference between the input blood pressure through the vena cava and the output back pressure through the aorta.
Within the renal sacs, two recognized and specific cells are responsible for the regulation of ions. The two kinds of cells are the lacuna-forming cells and the epithelial cells that are typical to kidney tubules. The epithelia cells are ciliated, cylindrical, and polarized with three distinct regions. These three regions are apical, middle cytoplasmic, and basal lamina. The middle cytoplasmic region is the most active of the three due to the concentration of multiple organelles within, such as mitochondria and smooth and rough endoplasmic reticulum, among others. The increase of activity is due to the interlocking labyrinth of the basal lamina creating a crosscurrent activity similar to the mitochondrial-rich cells found in teleost marine fish. The lacuna-forming cells are characterized by contact to the basal lamina, but not reaching the apical rim of the associated epithelial cells and are located in the branchial heart epithelium. The shape varies widely and are occasionally more electron-dense than the epithelial cells, seen as a "diffused kidney" regulating ion concentrations.
As ectothermal animals, common octopuses are highly influenced by changes in temperature. All species have a thermal preference where they can function at their basal metabolic rate. The low metabolic rate allows for rapid growth, thus these cephalopods mate as the water becomes closest to the preferential zone. Increasing temperatures cause an increase in oxygen consumption by O. vulgaris. Increased oxygen consumption can be directly related to the metabolic rate, because the breakdown of molecules such as glucose requires an input of oxygen, as explained by the Krebs cycle. The amount of ammonia excreted conversely decreases with increasing temperature. The decrease in ammonia being excreted is also related to the metabolism of the octopus due to its need to spend more energy as the temperature increases. Octopus vulgaris will reduce the amount of ammonia excreted in order to use the excess solutes that it would have otherwise excreted due to the increased metabolic rate. Octopuses do not regulate their internal temperatures until it reaches a threshold where they must begin to regulate to prevent death. The increase in metabolic rate shown with increasing temperatures is likely due to the octopus swimming to shallower or deeper depths to stay within its preferential temperature zone.
Spawning of O. vulgaris in this area extends from December to September with a unique peak in spring months.
Norman, M.D. 2000. Cephalopods: A World Guide. ConchBooks.
"Common Octopus". Animals. National Geographic. 10 May 2011. Archived from the original on 17 October 2016. https://web.archive.org/web/20161017154100/http://www.nationalgeographic.com/animals/invertebrates/c/common-octopus/
Perales-Raya, Catalina; Almansa, Eduardo; Bartolomé, Aurora; Felipe, Beatriz C.; Iglesias, José; Sánchez, Francisco Javier; Carrasco, José Francisco; Rodríguez, Carmen (2014). "Age Validation in Octopus vulgaris Beaks Across the Full Ontogenetic Range: Beaks as Recorders of Life Events in Octopuses". Journal of Shellfish Research. 33 (2): 481–493. doi:10.2983/035.033.0217. hdl:10508/9595. ISSN 0730-8000. S2CID 85772903. https://bioone.org/journals/journal-of-shellfish-research/volume-33/issue-2/035.033.0217/Age-Validation-in-Octopus-vulgaris-Beaks-Across-the-Full-Ontogenetic/10.2983/035.033.0217.full
Hernández-Urcera, Jorge; Garci, Manuel E.; Roura, Álvaro; González, Ángel F.; Cabanellas-Reboredo, Miguel; Morales-Nin, Beatriz; Guerra, Ángel (November 2014). "Cannibalistic behavior of octopus (Octopus vulgaris) in the wild". Journal of Comparative Psychology. 128 (4): 427–430. doi:10.1037/a0036883. hdl:10261/123375. PMID 25198542. /wiki/Doi_(identifier)
Norman, M.D. 2000. Cephalopods: A World Guide. ConchBooks.
Kanda, Atsuhiro; Iwakoshi-Ukena, Eiko; Takuwa-Kuroda, Kyoko; Minakata, Hiroyuki (January 2003). "Isolation and characterization of novel tachykinins from the posterior salivary gland of the common octopus Octopus vulgaris". Peptides. 24 (1): 35–43. doi:10.1016/s0196-9781(02)00274-7. PMID 12576083. S2CID 21487225. /wiki/Doi_(identifier)
"Octopus opens jar". YouTube. 16 September 2010. Archived from the original on 15 December 2021. Retrieved 5 February 2021. https://www.youtube.com/watch?v=9kuAiuXezIU
"Octopus in prawn trap". YouTube. 12 February 2007. Archived from the original on 15 December 2021. Retrieved 24 April 2019. https://www.youtube.com/watch?v=LEvXcocqmYE
Godfrey-Smith, Peter (2016). Other Minds: The Octopus, the Sea, and the Deep Origins of Consciousness. New York: Farrar, Straus and Giroux. https://us.macmillan.com/books/9780374537197
"The Animals (Scientific Procedures) Act(Amendment) Order 1993". 23 August 1993. Retrieved 22 February 2013. http://www.legislation.gov.uk/uksi/1993/2103/made
"FAO Fisheries & Aquaculture – Aquatic species". http://www.fao.org/fishery/species/3571/en
"Octopus vulgaris". Animal Diversity Web. https://animaldiversity.org/accounts/Octopus_vulgaris/
Belcari, P., Cuccu, D., González, M., Srairi, A. & Vidoris, P. (2002) Distribution and abundance of Octopus vulgaris Cuvier 1797, (Cephalopoda: Octopoda) in the Mediterranean Sea. Scientia Marina, 66(S2): 157–166. doi:10.3989/scimar.2002.66s2157. /wiki/Doi_(identifier)
Belcari, P., Cuccu, D., González, M., Srairi, A. & Vidoris, P. (2002) Distribution and abundance of Octopus vulgaris Cuvier 1797, (Cephalopoda: Octopoda) in the Mediterranean Sea. Scientia Marina, 66(S2): 157–166. doi:10.3989/scimar.2002.66s2157. /wiki/Doi_(identifier)
Moreno, A., Lourenço, S., Pereira, J., Gaspar, M.B., Cabral, H.N., Pierce, G.J., et al. (2013). Essential habits for pre-recruit Octopus vulgaris along the Portuguese coast. Fisheries Research, 152: 74–85. doi:10.1016/j.fishres.2013.08.005. /wiki/Doi_(identifier)
Moreno, A., Lourenço, S., Pereira, J., Gaspar, M.B., Cabral, H.N., Pierce, G.J., et al. (2013). Essential habits for pre-recruit Octopus vulgaris along the Portuguese coast. Fisheries Research, 152: 74–85. doi:10.1016/j.fishres.2013.08.005. /wiki/Doi_(identifier)
Katsanevakis, S. & Verriopoulos, G. (2004). Abundance of Octopus vulgaris on soft sediment. Scientia Marina, 68, 553–560. doi:10.3989/scimar.2004.68n4553. /wiki/Doi_(identifier)
Moreno, A., Lourenço, S., Pereira, J., Gaspar, M.B., Cabral, H.N., Pierce, G.J., et al. (2013). Essential habits for pre-recruit Octopus vulgaris along the Portuguese coast. Fisheries Research, 152: 74–85. doi:10.1016/j.fishres.2013.08.005. /wiki/Doi_(identifier)
Valverde, Jesús C. & García, Benjamin. (2005). Suitable dissolved oxygen levels for common octopus (Octopus vulgaris cuvier, 1797) at different weights and temperature: analysis of respiratory behavior. Aquaculture. 244: 303–314. doi:10.1016/j.aquaculture.2004.09.036. /wiki/Doi_(identifier)
Madan, J.J. & Wells, M.J. (1996). Cutaneous respiration in Octopus vulgaris. The Journal of Experimental Biology, 199: 2477–2483 http://jeb.biologists.org/content/jexbio/199/11/2477.full.pdf
Madan, J.J. & Wells, M.J. (1996). Cutaneous respiration in Octopus vulgaris. The Journal of Experimental Biology, 199: 2477–2483 http://jeb.biologists.org/content/jexbio/199/11/2477.full.pdf
Katsanevakis, S., Stephanopoulou, S., Miliou, H., Moraitou-Apostolopoulou, M. & Verriopoulos, G. (2005). Oxygen consumption and ammonia excretion of Octopus vulgaris (Cephalopoda) in relation to body mass and temperature. Marine Biology, 146, 725–732. doi:10.1007/s00227-004-1473-9. /wiki/Doi_(identifier)
Wells, M.J., Duthie, G.G., Houlihan, D.F., Smith, P.J.S. & Wells, J. (1987). Blood flow and pressure changes in exercising octopuses (Octopus vulgaris). The Journal of Experimental Biology, 131, 175–187
Moreno, A., Lourenço, S., Pereira, J., Gaspar, M.B., Cabral, H.N., Pierce, G.J., et al. (2013). Essential habits for pre-recruit Octopus vulgaris along the Portuguese coast. Fisheries Research, 152: 74–85. doi:10.1016/j.fishres.2013.08.005. /wiki/Doi_(identifier)
Wells, M.J., Duthie, G.G., Houlihan, D.F., Smith, P.J.S. & Wells, J. (1987). Blood flow and pressure changes in exercising octopuses (Octopus vulgaris). The Journal of Experimental Biology, 131, 175–187
Wells, M.J., Duthie, G.G., Houlihan, D.F., Smith, P.J.S. & Wells, J. (1987). Blood flow and pressure changes in exercising octopuses (Octopus vulgaris). The Journal of Experimental Biology, 131, 175–187
Wells, M.J., Duthie, G.G., Houlihan, D.F., Smith, P.J.S. & Wells, J. (1987). Blood flow and pressure changes in exercising octopuses (Octopus vulgaris). The Journal of Experimental Biology, 131, 175–187
Young, Richard E. & Vecchione, Michael. (2002). Evolution of the gills in the octopodiformes. Bulletin of marine science. 71(2): 1003–1017
Young, Richard E. & Vecchione, Michael. (2002). Evolution of the gills in the octopodiformes. Bulletin of marine science. 71(2): 1003–1017
Wells, M.J., & Wells, J. (1995). The control of ventilatory and cardiac responses to changes in ambient oxygen tension and oxygen demand in Octopus. The Journal of Experimental Biology, 198, 1717–1727
Wells, M.J., & Wells, J. (1995). The control of ventilatory and cardiac responses to changes in ambient oxygen tension and oxygen demand in Octopus. The Journal of Experimental Biology, 198, 1717–1727
Madan, J.J. & Wells, M.J. (1996). Cutaneous respiration in Octopus vulgaris. The Journal of Experimental Biology, 199: 2477–2483 http://jeb.biologists.org/content/jexbio/199/11/2477.full.pdf
Madan, J.J. & Wells, M.J. (1996). Cutaneous respiration in Octopus vulgaris. The Journal of Experimental Biology, 199: 2477–2483 http://jeb.biologists.org/content/jexbio/199/11/2477.full.pdf
Madan, J.J. & Wells, M.J. (1996). Cutaneous respiration in Octopus vulgaris. The Journal of Experimental Biology, 199: 2477–2483 http://jeb.biologists.org/content/jexbio/199/11/2477.full.pdf
Valverde, Jesús C. & García, Benjamin. (2005). Suitable dissolved oxygen levels for common octopus (Octopus vulgaris cuvier, 1797) at different weights and temperature: analysis of respiratory behavior. Aquaculture. 244: 303–314. doi:10.1016/j.aquaculture.2004.09.036. /wiki/Doi_(identifier)
Wells, M.J., & Wells, J. (1995). The control of ventilatory and cardiac responses to changes in ambient oxygen tension and oxygen demand in Octopus. The Journal of Experimental Biology, 198, 1717–1727
Valverde, Jesús C. & García, Benjamin. (2005). Suitable dissolved oxygen levels for common octopus (Octopus vulgaris cuvier, 1797) at different weights and temperature: analysis of respiratory behavior. Aquaculture. 244: 303–314. doi:10.1016/j.aquaculture.2004.09.036. /wiki/Doi_(identifier)
Valverde, Jesús C. & García, Benjamin. (2005). Suitable dissolved oxygen levels for common octopus (Octopus vulgaris cuvier, 1797) at different weights and temperature: analysis of respiratory behavior. Aquaculture. 244: 303–314. doi:10.1016/j.aquaculture.2004.09.036. /wiki/Doi_(identifier)
Wells, M.J., & Wells, J. (1995). The control of ventilatory and cardiac responses to changes in ambient oxygen tension and oxygen demand in Octopus. The Journal of Experimental Biology, 198, 1717–1727
Young, Richard E. & Vecchione, Michael. (2002). Evolution of the gills in the octopodiformes. Bulletin of marine science. 71(2): 1003–1017
Eno, N.C. (August 1994). The morphometrics of cephalopod gills. Journal of the Marine Biological Association of the United Kingdom, 74(3), 687–706
Melzner, F., Block, C. & Pörtner, H.O. (2006). Temperature-dependent oxygen extraction from the ventilatory current and the costs of ventilation in the cephalopod Sepia officinalis. Journal of Comparative Physiology B, 176, 607–621
Wells, M.J., & Wells, J. (1995). The control of ventilatory and cardiac responses to changes in ambient oxygen tension and oxygen demand in Octopus. The Journal of Experimental Biology, 198, 1717–1727
Wells, M.J., & Smith, P.J.S. (1987). The performance of the octopus circulatory system: A triumph of engineering over design. Experientia, 43, 487–499
Wells, M.J. (1980). Nervous control of the heartbeat in Octopus. The Journal of Experimental Biology, 85, 111–128. PMID 7373208. http://jeb.biologists.org/content/85/1/111.long
Smith, P.J.S. (1981). The role of venous pressure in regulation of output from the heart of the octopus, Eledone cirrhosa (Lam.). The Journal of Experimental Biology, 93, 243–255 http://jeb.biologists.org/content/93/1/243.short
O'Dor, R.K., & Wells, M.J. (1984). Circulation time, blood reserves and extracellular space in a cephalopod. The Journal of Experimental Biology, 113, 461–464. hdl:10222/29342. /wiki/Hdl_(identifier)
Wells, M.J. (1979). The heartbeat of Octopus vulgaris. The Journal of Experimental Biology, 78, 87–104 http://jeb.biologists.org/content/78/1/87.short
Wells, M.J. (1979). The heartbeat of Octopus vulgaris. The Journal of Experimental Biology, 78, 87–104 http://jeb.biologists.org/content/78/1/87.short
Wells, M.J. (1979). The heartbeat of Octopus vulgaris. The Journal of Experimental Biology, 78, 87–104 http://jeb.biologists.org/content/78/1/87.short
Shadwick, R.E., & Nilsson E.K.. (1990). The importance of vascular elasticity in the circulatory system of the cephalopod Octopus vulgaris. The Journal of Experimental Biology, 152, 471–484 http://jeb.biologists.org/content/152/1/471.short
Wells, M.J., & Wells, J. (1995). The control of ventilatory and cardiac responses to changes in ambient oxygen tension and oxygen demand in Octopus. The Journal of Experimental Biology, 198, 1717–1727
Wells, M.J. (1979). The heartbeat of Octopus vulgaris. The Journal of Experimental Biology, 78, 87–104 http://jeb.biologists.org/content/78/1/87.short
Wells, M.J. (1980). Nervous control of the heartbeat in Octopus. The Journal of Experimental Biology, 85, 111–128. PMID 7373208. http://jeb.biologists.org/content/85/1/111.long
Hill, Richard W., Gordon A. Wyse, and Margaret Anderson. Animal Physiology. 3rd ed. Sunderland, MA: (635–636, 654–657, 671–672) Sinauer Associates, 2012. Print
"Octopus Fact Sheet" (PDF). World Animal Foundation. http://www.worldanimalfoundation.net/f/Octopus.pdf
Pörtner, H. O. (January 1995). "Coordination of metabolism, acid-base regulation and haemocyanin function in cephalopods" (PDF). Marine and Freshwater Behaviour and Physiology. 25 (1–3): 131–148. Bibcode:1995MFBP...25..131P. doi:10.1080/10236249409378913. https://epic.awi.de/id/eprint/2449/1/Poe1994b.pdf
Wells, M.J. (1980). Nervous control of the heartbeat in Octopus. The Journal of Experimental Biology, 85, 111–128. PMID 7373208. http://jeb.biologists.org/content/85/1/111.long
O'Dor, R.K., & Wells, M.J. (1984). Circulation time, blood reserves and extracellular space in a cephalopod. The Journal of Experimental Biology, 113, 461–464. hdl:10222/29342. /wiki/Hdl_(identifier)
Wells, M.J. (1979). The heartbeat of Octopus vulgaris. The Journal of Experimental Biology, 78, 87–104 http://jeb.biologists.org/content/78/1/87.short
Shadwick, R.E., & Nilsson E.K.. (1990). The importance of vascular elasticity in the circulatory system of the cephalopod Octopus vulgaris. The Journal of Experimental Biology, 152, 471–484 http://jeb.biologists.org/content/152/1/471.short
Excitation-contraction coupling /wiki/Excitation-contraction_coupling
Hill, Richard W., Gordon A. Wyse, and Margaret Anderson. Animal Physiology. 3rd ed. Sunderland, MA: (635–636, 654–657, 671–672) Sinauer Associates, 2012. Print
Hill, Richard W., Gordon A. Wyse, and Margaret Anderson. Animal Physiology. 3rd ed. Sunderland, MA: (635–636, 654–657, 671–672) Sinauer Associates, 2012. Print
Shadwick, Robert E. & Gosline, John M. (1985). Mechanical properties of the octopus aorta. The Journal of Experimental Biology, 114, 259–284 http://jeb.biologists.org/content/114/1/259.short
Shadwick, R.E., & Nilsson E.K.. (1990). The importance of vascular elasticity in the circulatory system of the cephalopod Octopus vulgaris. The Journal of Experimental Biology, 152, 471–484 http://jeb.biologists.org/content/152/1/471.short
Shadwick, R.E., & Nilsson E.K.. (1990). The importance of vascular elasticity in the circulatory system of the cephalopod Octopus vulgaris. The Journal of Experimental Biology, 152, 471–484 http://jeb.biologists.org/content/152/1/471.short
Wells, M.J. (1978). Octopus: Physiology and behaviour of an advanced invertebrate. Cambridge: University Printing House.
Wells, M.J. (1978). Octopus: Physiology and behaviour of an advanced invertebrate. Cambridge: University Printing House.
Wells, M.J. (1978). Octopus: Physiology and behaviour of an advanced invertebrate. Cambridge: University Printing House.
Vaz-Pires, Paulo; Seixas, Pedro; Barbosa, Alexandra (September 2004). "Aquaculture potential of the common octopus (Octopus vulgaris Cuvier, 1797): a review". Aquaculture. 238 (1–4): 221–238. Bibcode:2004Aquac.238..221V. doi:10.1016/j.aquaculture.2004.05.018. /wiki/Bibcode_(identifier)
Wells, M.J. (1978). Octopus: Physiology and behaviour of an advanced invertebrate. Cambridge: University Printing House.
Wells, M.J. (1978). Octopus: Physiology and behaviour of an advanced invertebrate. Cambridge: University Printing House.
Wells, M.J. (1978). Octopus: Physiology and behaviour of an advanced invertebrate. Cambridge: University Printing House.
Wells, M.J. (1978). Octopus: Physiology and behaviour of an advanced invertebrate. Cambridge: University Printing House.
Wells, M.J. (1978). Octopus: Physiology and behaviour of an advanced invertebrate. Cambridge: University Printing House.
Wells, M.J. (1978). Octopus: Physiology and behaviour of an advanced invertebrate. Cambridge: University Printing House.
Wells, M.J. (1978). Octopus: Physiology and behaviour of an advanced invertebrate. Cambridge: University Printing House.
Wells, M.J. (1978). Octopus: Physiology and behaviour of an advanced invertebrate. Cambridge: University Printing House.
Wells, M.J. (1978). Octopus: Physiology and behaviour of an advanced invertebrate. Cambridge: University Printing House.
Katsanevakis, S., Stephanopoulou, S., Miliou, H., Moraitou-Apostolopoulou, M. & Verriopoulos, G. (2005). Oxygen consumption and ammonia excretion of Octopus vulgaris (Cephalopoda) in relation to body mass and temperature. Marine Biology, 146, 725–732. doi:10.1007/s00227-004-1473-9. /wiki/Doi_(identifier)
Katsanevakis, S., Stephanopoulou, S., Miliou, H., Moraitou-Apostolopoulou, M. & Verriopoulos, G. (2005). Oxygen consumption and ammonia excretion of Octopus vulgaris (Cephalopoda) in relation to body mass and temperature. Marine Biology, 146, 725–732. doi:10.1007/s00227-004-1473-9. /wiki/Doi_(identifier)
Wells, M.J. (1978). Octopus: Physiology and behaviour of an advanced invertebrate. Cambridge: University Printing House.
Wells, M.J. (1978). Octopus: Physiology and behaviour of an advanced invertebrate. Cambridge: University Printing House.
Wells, M.J. (1978). Octopus: Physiology and behaviour of an advanced invertebrate. Cambridge: University Printing House.
Wells, M.J. (1978). Octopus: Physiology and behaviour of an advanced invertebrate. Cambridge: University Printing House.
Witmer, A. (1975). The fine structure of the renopericardial cavity of the cephalopod ocotopus dofleine martini. Journal of Ultrastructure Research, (53), 29–36.
Wells, M.J. (1978). Octopus: Physiology and behaviour of an advanced invertebrate. Cambridge: University Printing House.
Wells, M.J. (1978). Octopus: Physiology and behaviour of an advanced invertebrate. Cambridge: University Printing House.
Wells, M.J. (1978). Octopus: Physiology and behaviour of an advanced invertebrate. Cambridge: University Printing House.
Wells, M.J. (1978). Octopus: Physiology and behaviour of an advanced invertebrate. Cambridge: University Printing House.
Hill, R.W., Wyse, G.A., & Anderson, M. (2012). Animal Physiology. Sunderland: SinauerAssociates pp. 164–165.
Hill, R.W., Wyse, G.A., & Anderson, M. (2012). Animal Physiology. Sunderland: SinauerAssociates pp. 164–165.
Katsanevakis, S., Protopapas, N., Miliou, H. & Verriopoulos, G. (2005). Effect of temperature on specific dynamic action in the common octopus, Octopus vulgaris (Cephalopoda). Marine Biology, 146, 733–738.
Yin, Fei; Sun, Peng; Peng, Shiming; Tang, Baojun; Zhang, Dong; Wang, Chunlin; Mu, Changkao; Shi, Zhaohong (July 2013). "The respiration, excretion and biochemical response of the juvenile common Chinese cuttlefish, Sepiella maindroni at different temperatures". Aquaculture. 402–403: 127–132. Bibcode:2013Aquac.402..127Y. doi:10.1016/j.aquaculture.2013.03.018. /wiki/Bibcode_(identifier)
Yin, Fei; Sun, Peng; Peng, Shiming; Tang, Baojun; Zhang, Dong; Wang, Chunlin; Mu, Changkao; Shi, Zhaohong (July 2013). "The respiration, excretion and biochemical response of the juvenile common Chinese cuttlefish, Sepiella maindroni at different temperatures". Aquaculture. 402–403: 127–132. Bibcode:2013Aquac.402..127Y. doi:10.1016/j.aquaculture.2013.03.018. /wiki/Bibcode_(identifier)
Yin, Fei; Sun, Peng; Peng, Shiming; Tang, Baojun; Zhang, Dong; Wang, Chunlin; Mu, Changkao; Shi, Zhaohong (July 2013). "The respiration, excretion and biochemical response of the juvenile common Chinese cuttlefish, Sepiella maindroni at different temperatures". Aquaculture. 402–403: 127–132. Bibcode:2013Aquac.402..127Y. doi:10.1016/j.aquaculture.2013.03.018. /wiki/Bibcode_(identifier)
Yin, Fei; Sun, Peng; Peng, Shiming; Tang, Baojun; Zhang, Dong; Wang, Chunlin; Mu, Changkao; Shi, Zhaohong (July 2013). "The respiration, excretion and biochemical response of the juvenile common Chinese cuttlefish, Sepiella maindroni at different temperatures". Aquaculture. 402–403: 127–132. Bibcode:2013Aquac.402..127Y. doi:10.1016/j.aquaculture.2013.03.018. /wiki/Bibcode_(identifier)
Zeilinski S., et al. 2001. Temperature effects on hemocyanin oxygen binding in an antarctic cephalopod. The Biological Bulletin. 200(1): 67–76. doi:10.2307/1543086. PMID 11249213. /wiki/Doi_(identifier)
Zeilinski S., et al. 2001. Temperature effects on hemocyanin oxygen binding in an antarctic cephalopod. The Biological Bulletin. 200(1): 67–76. doi:10.2307/1543086. PMID 11249213. /wiki/Doi_(identifier)
Zeilinski S., et al. 2001. Temperature effects on hemocyanin oxygen binding in an antarctic cephalopod. The Biological Bulletin. 200(1): 67–76. doi:10.2307/1543086. PMID 11249213. /wiki/Doi_(identifier)
Yin, Fei; Sun, Peng; Peng, Shiming; Tang, Baojun; Zhang, Dong; Wang, Chunlin; Mu, Changkao; Shi, Zhaohong (July 2013). "The respiration, excretion and biochemical response of the juvenile common Chinese cuttlefish, Sepiella maindroni at different temperatures". Aquaculture. 402–403: 127–132. Bibcode:2013Aquac.402..127Y. doi:10.1016/j.aquaculture.2013.03.018. /wiki/Bibcode_(identifier)
Zeilinski S., et al. 2001. Temperature effects on hemocyanin oxygen binding in an antarctic cephalopod. The Biological Bulletin. 200(1): 67–76. doi:10.2307/1543086. PMID 11249213. /wiki/Doi_(identifier)
Yin, Fei; Sun, Peng; Peng, Shiming; Tang, Baojun; Zhang, Dong; Wang, Chunlin; Mu, Changkao; Shi, Zhaohong (July 2013). "The respiration, excretion and biochemical response of the juvenile common Chinese cuttlefish, Sepiella maindroni at different temperatures". Aquaculture. 402–403: 127–132. Bibcode:2013Aquac.402..127Y. doi:10.1016/j.aquaculture.2013.03.018. /wiki/Bibcode_(identifier)
Zeilinski S., et al. 2001. Temperature effects on hemocyanin oxygen binding in an antarctic cephalopod. The Biological Bulletin. 200(1): 67–76. doi:10.2307/1543086. PMID 11249213. /wiki/Doi_(identifier)
Noyola, J., Caamal-Monsreal, C., Díaz, F., Re, D., Sánchez, A., & Rosas, C. (2013). Thermopreference, tolerance and metabolic rate of early stages juvenile Octopus maya acclimated to different temperatures. Journal of Thermal Biology, 38, 14–19.
Hill, R.W., Wyse, G.A., & Anderson, M. (2012). Animal Physiology. Sunderland: SinauerAssociates pp. 164–165.
Noyola, J., Caamal-Monsreal, C., Díaz, F., Re, D., Sánchez, A., & Rosas, C. (2013). Thermopreference, tolerance and metabolic rate of early stages juvenile Octopus maya acclimated to different temperatures. Journal of Thermal Biology, 38, 14–19.
Noyola, J., Caamal-Monsreal, C., Díaz, F., Re, D., Sánchez, A., & Rosas, C. (2013). Thermopreference, tolerance and metabolic rate of early stages juvenile Octopus maya acclimated to different temperatures. Journal of Thermal Biology, 38, 14–19.
Katsanevakis, S., Protopapas, N., Miliou, H. & Verriopoulos, G. (2005). Effect of temperature on specific dynamic action in the common octopus, Octopus vulgaris (Cephalopoda). Marine Biology, 146, 733–738.
Noyola, J., Caamal-Monsreal, C., Díaz, F., Re, D., Sánchez, A., & Rosas, C. (2013). Thermopreference, tolerance and metabolic rate of early stages juvenile Octopus maya acclimated to different temperatures. Journal of Thermal Biology, 38, 14–19.
Katsanevakis, S., Stephanopoulou, S., Miliou, H., Moraitou-Apostolopoulou, M. & Verriopoulos, G. (2005). Oxygen consumption and ammonia excretion of Octopus vulgaris (Cephalopoda) in relation to body mass and temperature. Marine Biology, 146, 725–732. doi:10.1007/s00227-004-1473-9. /wiki/Doi_(identifier)
Katsanevakis, S., Stephanopoulou, S., Miliou, H., Moraitou-Apostolopoulou, M. & Verriopoulos, G. (2005). Oxygen consumption and ammonia excretion of Octopus vulgaris (Cephalopoda) in relation to body mass and temperature. Marine Biology, 146, 725–732. doi:10.1007/s00227-004-1473-9. /wiki/Doi_(identifier)
Katsanevakis, S., Stephanopoulou, S., Miliou, H., Moraitou-Apostolopoulou, M. & Verriopoulos, G. (2005). Oxygen consumption and ammonia excretion of Octopus vulgaris (Cephalopoda) in relation to body mass and temperature. Marine Biology, 146, 725–732. doi:10.1007/s00227-004-1473-9. /wiki/Doi_(identifier)
Otero, González, Á. F., Sieiro, M. P., & Guerra, Á. (2007). Reproductive cycle and energy allocation of Octopus vulgaris in Galician waters, NE Atlantic. Fisheries Research, 85(1), 122–129. https://doi.org/10.1016/j.fishres.2007.01.007
https://doi.org/10.1016/j.fishres.2007.01.007