Let f : X → V {\displaystyle f:X\to V} where ( X , Σ , μ ) {\displaystyle (X,\Sigma ,\mu )} is a measure space and V {\displaystyle V} is a topological vector space (TVS) with a continuous dual space V ′ {\displaystyle V'} that separates points (that is, if x ∈ V {\displaystyle x\in V} is nonzero then there is some l ∈ V ′ {\displaystyle l\in V'} such that l ( x ) ≠ 0 {\displaystyle l(x)\neq 0} ), for example, V {\displaystyle V} is a normed space or (more generally) is a Hausdorff locally convex TVS. Evaluation of a functional may be written as a duality pairing: ⟨ φ , x ⟩ = φ [ x ] . {\displaystyle \langle \varphi ,x\rangle =\varphi [x].}
The map f : X → V {\displaystyle f:X\to V} is called weakly measurable if for all φ ∈ V ′ , {\displaystyle \varphi \in V',} the scalar-valued map φ ∘ f {\displaystyle \varphi \circ f} is a measurable map. A weakly measurable map f : X → V {\displaystyle f:X\to V} is said to be weakly integrable on X {\displaystyle X} if there exists some e ∈ V {\displaystyle e\in V} such that for all φ ∈ V ′ , {\displaystyle \varphi \in V',} the scalar-valued map φ ∘ f {\displaystyle \varphi \circ f} is Lebesgue integrable (that is, φ ∘ f ∈ L 1 ( X , Σ , μ ) {\displaystyle \varphi \circ f\in L^{1}\left(X,\Sigma ,\mu \right)} ) and φ ( e ) = ∫ X φ ( f ( x ) ) d μ ( x ) . {\displaystyle \varphi (e)=\int _{X}\varphi (f(x))\,\mathrm {d} \mu (x).}
The map f : X → V {\displaystyle f:X\to V} is said to be Pettis integrable if φ ∘ f ∈ L 1 ( X , Σ , μ ) {\displaystyle \varphi \circ f\in L^{1}\left(X,\Sigma ,\mu \right)} for all φ ∈ V ′ {\displaystyle \varphi \in V^{\prime }} and also for every A ∈ Σ {\displaystyle A\in \Sigma } there exists a vector e A ∈ V {\displaystyle e_{A}\in V} such that ⟨ φ , e A ⟩ = ∫ A ⟨ φ , f ( x ) ⟩ d μ ( x ) for all φ ∈ V ′ . {\displaystyle \langle \varphi ,e_{A}\rangle =\int _{A}\langle \varphi ,f(x)\rangle \,\mathrm {d} \mu (x)\quad {\text{ for all }}\varphi \in V'.}
In this case, e A {\displaystyle e_{A}} is called the Pettis integral of f {\displaystyle f} on A . {\displaystyle A.} Common notations for the Pettis integral e A {\displaystyle e_{A}} include ∫ A f d μ , ∫ A f ( x ) d μ ( x ) , and, in case that A = X is understood, μ [ f ] . {\displaystyle \int _{A}f\,\mathrm {d} \mu ,\qquad \int _{A}f(x)\,\mathrm {d} \mu (x),\quad {\text{and, in case that}}~A=X~{\text{is understood,}}\quad \mu [f].}
To understand the motivation behind the definition of "weakly integrable", consider the special case where V {\displaystyle V} is the underlying scalar field; that is, where V = R {\displaystyle V=\mathbb {R} } or V = C . {\displaystyle V=\mathbb {C} .} In this case, every linear functional φ {\displaystyle \varphi } on V {\displaystyle V} is of the form φ ( y ) = s y {\displaystyle \varphi (y)=sy} for some scalar s ∈ V {\displaystyle s\in V} (that is, φ {\displaystyle \varphi } is just scalar multiplication by a constant), the condition φ ( e ) = ∫ A φ ( f ( x ) ) d μ ( x ) for all φ ∈ V ′ , {\displaystyle \varphi (e)=\int _{A}\varphi (f(x))\,\mathrm {d} \mu (x)\quad {\text{for all}}~\varphi \in V',} simplifies to s e = ∫ A s f ( x ) d μ ( x ) for all scalars s . {\displaystyle se=\int _{A}sf(x)\,\mathrm {d} \mu (x)\quad {\text{for all scalars}}~s.} In particular, in this special case, f {\displaystyle f} is weakly integrable on X {\displaystyle X} if and only if f {\displaystyle f} is Lebesgue integrable.
The map f : X → V {\displaystyle f:X\to V} is said to be Dunford integrable if φ ∘ f ∈ L 1 ( X , Σ , μ ) {\displaystyle \varphi \circ f\in L^{1}\left(X,\Sigma ,\mu \right)} for all φ ∈ V ′ {\displaystyle \varphi \in V^{\prime }} and also for every A ∈ Σ {\displaystyle A\in \Sigma } there exists a vector d A ∈ V ″ , {\displaystyle d_{A}\in V'',} called the Dunford integral of f {\displaystyle f} on A , {\displaystyle A,} such that ⟨ d A , φ ⟩ = ∫ A ⟨ φ , f ( x ) ⟩ d μ ( x ) for all φ ∈ V ′ {\displaystyle \langle d_{A},\varphi \rangle =\int _{A}\langle \varphi ,f(x)\rangle \,\mathrm {d} \mu (x)\quad {\text{ for all }}\varphi \in V'} where ⟨ d A , φ ⟩ = d A ( φ ) . {\displaystyle \langle d_{A},\varphi \rangle =d_{A}(\varphi ).}
Identify every vector x ∈ V {\displaystyle x\in V} with the map scalar-valued functional on V ′ {\displaystyle V'} defined by φ ∈ V ′ ↦ φ ( x ) . {\displaystyle \varphi \in V'\mapsto \varphi (x).} This assignment induces a map called the canonical evaluation map and through it, V {\displaystyle V} is identified as a vector subspace of the double dual V ″ . {\displaystyle V''.} The space V {\displaystyle V} is a semi-reflexive space if and only if this map is surjective. The f : X → V {\displaystyle f:X\to V} is Pettis integrable if and only if d A ∈ V {\displaystyle d_{A}\in V} for every A ∈ Σ . {\displaystyle A\in \Sigma .}
An immediate consequence of the definition is that Pettis integrals are compatible with continuous linear operators: If Φ : V 1 → V 2 {\displaystyle \Phi \colon V_{1}\to V_{2}} is linear and continuous and f : X → V 1 {\displaystyle f\colon X\to V_{1}} is Pettis integrable, then Φ ∘ f {\displaystyle \Phi \circ f} is Pettis integrable as well and ∫ X Φ ( f ( x ) ) d μ ( x ) = Φ ( ∫ X f ( x ) d μ ( x ) ) . {\displaystyle \int _{X}\Phi (f(x))\,d\mu (x)=\Phi \left(\int _{X}f(x)\,d\mu (x)\right).}
The standard estimate | ∫ X f ( x ) d μ ( x ) | ≤ ∫ X | f ( x ) | d μ ( x ) {\displaystyle \left|\int _{X}f(x)\,d\mu (x)\right|\leq \int _{X}|f(x)|\,d\mu (x)} for real- and complex-valued functions generalises to Pettis integrals in the following sense: For all continuous seminorms p : V → R {\displaystyle p\colon V\to \mathbb {R} } and all Pettis integrable f : X → V {\displaystyle f\colon X\to V} , p ( ∫ X f ( x ) d μ ( x ) ) ≤ ∫ X _ p ( f ( x ) ) d μ ( x ) {\displaystyle p\left(\int _{X}f(x)\,d\mu (x)\right)\leq {\underline {\int _{X}}}p(f(x))\,d\mu (x)} holds. The right-hand side is the lower Lebesgue integral of a [ 0 , ∞ ] {\displaystyle [0,\infty ]} -valued function, that is, ∫ X _ g d μ := sup { ∫ X h d μ | h : X → [ 0 , ∞ ] is measurable and 0 ≤ h ≤ g } . {\displaystyle {\underline {\int _{X}}}g\,d\mu :=\sup \left\{\left.\int _{X}h\,d\mu \;\right|\;h\colon X\to [0,\infty ]{\text{ is measurable and }}0\leq h\leq g\right\}.} Taking a lower Lebesgue integral is necessary because the integrand p ∘ f {\displaystyle p\circ f} may not be measurable. This follows from the Hahn-Banach theorem because for every vector v ∈ V {\displaystyle v\in V} there must be a continuous functional φ ∈ V ∗ {\displaystyle \varphi \in V^{*}} such that φ ( v ) = p ( v ) {\displaystyle \varphi (v)=p(v)} and for all w ∈ V {\displaystyle w\in V} , | φ ( w ) | ≤ p ( w ) {\displaystyle |\varphi (w)|\leq p(w)} . Applying this to v := ∫ X f d μ {\displaystyle v:=\int _{X}f\,d\mu } gives the result.
An important property is that the Pettis integral with respect to a finite measure is contained in the closure of the convex hull of the values scaled by the measure of the integration domain: μ ( A ) < ∞ implies ∫ A f d μ ∈ μ ( A ) ⋅ co ( f ( A ) ) ¯ {\displaystyle \mu (A)<\infty {\text{ implies }}\int _{A}f\,d\mu \in \mu (A)\cdot {\overline {\operatorname {co} (f(A))}}}
This is a consequence of the Hahn-Banach theorem and generalizes the mean value theorem for integrals of real-valued functions: If V = R {\displaystyle V=\mathbb {R} } , then closed convex sets are simply intervals and for f : X → [ a , b ] {\displaystyle f\colon X\to [a,b]} , the following inequalities hold: μ ( A ) a ≤ ∫ A f d μ ≤ μ ( A ) b . {\displaystyle \mu (A)a~\leq ~\int _{A}f\,d\mu ~\leq ~\mu (A)b.}
If V = R n {\displaystyle V=\mathbb {R} ^{n}} is finite-dimensional then f {\displaystyle f} is Pettis integrable if and only if each of f {\displaystyle f} ’s coordinates is Lebesgue integrable.
If f {\displaystyle f} is Pettis integrable and A ∈ Σ {\displaystyle A\in \Sigma } is a measurable subset of X {\displaystyle X} , then by definition f | A : A → V {\displaystyle f_{|A}\colon A\to V} and f ⋅ 1 A : X → V {\displaystyle f\cdot 1_{A}\colon X\to V} are also Pettis integrable and ∫ A f | A d μ = ∫ X f ⋅ 1 A d μ . {\displaystyle \int _{A}f_{|A}\,d\mu =\int _{X}f\cdot 1_{A}\,d\mu .}
If X {\displaystyle X} is a topological space, Σ = B X {\displaystyle \Sigma ={\mathfrak {B}}_{X}} its Borel- σ {\displaystyle \sigma } -algebra, μ {\displaystyle \mu } a Borel measure that assigns finite values to compact subsets, V {\displaystyle V} is quasi-complete (that is, every bounded Cauchy net converges) and if f {\displaystyle f} is continuous with compact support, then f {\displaystyle f} is Pettis integrable. More generally: If f {\displaystyle f} is weakly measurable and there exists a compact, convex C ⊆ V {\displaystyle C\subseteq V} and a null set N ⊆ X {\displaystyle N\subseteq X} such that f ( X ∖ N ) ⊆ C {\displaystyle f(X\setminus N)\subseteq C} , then f {\displaystyle f} is Pettis-integrable.
Let ( Ω , F , P ) {\displaystyle (\Omega ,{\mathcal {F}},\operatorname {P} )} be a probability space, and let V {\displaystyle V} be a topological vector space with a dual space that separates points. Let v n : Ω → V {\displaystyle v_{n}:\Omega \to V} be a sequence of Pettis-integrable random variables, and write E [ v n ] {\displaystyle \operatorname {E} [v_{n}]} for the Pettis integral of v n {\displaystyle v_{n}} (over X {\displaystyle X} ). Note that E [ v n ] {\displaystyle \operatorname {E} [v_{n}]} is a (non-random) vector in V , {\displaystyle V,} and is not a scalar value.
Let v ¯ N := 1 N ∑ n = 1 N v n {\displaystyle {\bar {v}}_{N}:={\frac {1}{N}}\sum _{n=1}^{N}v_{n}} denote the sample average. By linearity, v ¯ N {\displaystyle {\bar {v}}_{N}} is Pettis integrable, and E [ v ¯ N ] = 1 N ∑ n = 1 N E [ v n ] ∈ V . {\displaystyle \operatorname {E} [{\bar {v}}_{N}]={\frac {1}{N}}\sum _{n=1}^{N}\operatorname {E} [v_{n}]\in V.}
Suppose that the partial sums 1 N ∑ n = 1 N E [ v ¯ n ] {\displaystyle {\frac {1}{N}}\sum _{n=1}^{N}\operatorname {E} [{\bar {v}}_{n}]} converge absolutely in the topology of V , {\displaystyle V,} in the sense that all rearrangements of the sum converge to a single vector λ ∈ V . {\displaystyle \lambda \in V.} The weak law of large numbers implies that ⟨ φ , E [ v ¯ N ] − λ ⟩ → 0 {\displaystyle \langle \varphi ,\operatorname {E} [{\bar {v}}_{N}]-\lambda \rangle \to 0} for every functional φ ∈ V ∗ . {\displaystyle \varphi \in V^{*}.} Consequently, E [ v ¯ N ] → λ {\displaystyle \operatorname {E} [{\bar {v}}_{N}]\to \lambda } in the weak topology on X . {\displaystyle X.}
Without further assumptions, it is possible that E [ v ¯ N ] {\displaystyle \operatorname {E} [{\bar {v}}_{N}]} does not converge to λ . {\displaystyle \lambda .} To get strong convergence, more assumptions are necessary.