Hamiltonian quantum computation was the pioneering model of quantum computation, first proposed by Paul Benioff in 1980. Benioff's motivation for building a quantum mechanical model of a computer was to have a quantum mechanical description of artificial intelligence and to create a computer that would dissipate the least amount of energy allowable by the laws of physics.4 However, his model was not time-independent and local.5 Richard Feynman, independent of Benioff, also wanted to provide a description of a computer based on the laws of quantum physics. He solved the problem of a time-independent and local Hamiltonian by proposing a continuous-time quantum walk that could perform universal quantum computation.6 Superconducting qubits,7 Ultracold atoms and non-linear photonics8 have been proposed as potential experimental implementations of Hamiltonian quantum computers.
Given a list of quantum gates described as unitaries U 1 , U 2 . . . U k {\displaystyle U_{1},U_{2}...U_{k}} , define a hamiltonian
H = ∑ i = 1 k − 1 | i + 1 ⟩ ⟨ i | ⊗ U i + 1 + | i ⟩ ⟨ i + 1 | ⊗ U i + 1 † {\displaystyle H=\sum _{i=1}^{k-1}|i+1\rangle \langle i|\otimes U_{i+1}+|i\rangle \langle i+1|\otimes U_{i+1}^{\dagger }}
Evolving this Hamiltonian on a state | ϕ 0 ⟩ = | 100..00 ⟩ ⊗ | ψ 0 ⟩ {\displaystyle |\phi _{0}\rangle =|100..00\rangle \otimes |\psi _{0}\rangle } composed of a clock register ( | 100..00 ⟩ {\displaystyle |100..00\rangle } ) that constaines k + 1 {\displaystyle k+1} qubits and a data register ( | ψ 0 ⟩ {\displaystyle |\psi _{0}\rangle } ) will output | ϕ k ⟩ = e − i H t | ϕ 0 ⟩ {\displaystyle |\phi _{k}\rangle =e^{-iHt}|\phi _{0}\rangle } . At a time t {\displaystyle t} , the state of the clock register can be | 000..01 ⟩ {\displaystyle |000..01\rangle } . When that happens, the state of the data register will be U 1 , U 2 . . . U k | ψ 0 ⟩ {\displaystyle U_{1},U_{2}...U_{k}|\psi _{0}\rangle } . The computation is complete and | ϕ k ⟩ = | 000..01 ⟩ ⊗ U 1 , U 2 . . . U k | ψ 0 ⟩ {\displaystyle |\phi _{k}\rangle =|000..01\rangle \otimes U_{1},U_{2}...U_{k}|\psi _{0}\rangle } .9
Benioff Paul (1980). "The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines". Journal of Statistical Physics. 22 (5): 563–591. Bibcode:1980JSP....22..563B. doi:10.1007/BF01011339. /wiki/Bibcode_(identifier) ↩
Feynman, Richard P. (1986). "Quantum mechanical computers". Foundations of Physics. 16 (6): 507–531. Bibcode:1986FoPh...16..507F. doi:10.1007/BF01886518. /wiki/Bibcode_(identifier) ↩
Janzing, Dominik (2007). "Spin-1∕2 particles moving on a two-dimensional lattice with nearest-neighbor interactions can realize an autonomous quantum computer". Physical Review A. 75 (1): 012307. arXiv:quant-ph/0506270. doi:10.1103/PhysRevA.75.012307. /wiki/ArXiv_(identifier) ↩
LLoyd, Seth (1993). "Review of quantum computation". Vistas in Astronomy. 37: 291–295. doi:10.1016/0083-6656(93)90051-K. /wiki/Doi_(identifier) ↩
Ciani, A.; Terhal, B. M.; DiVincenzo, D. P. (2019). "Hamiltonian quantum computing with superconducting qubits". IOP Publishing. 4 (3): 035002. arXiv:1310.5100. doi:10.1088/2058-9565/ab18dd. /wiki/ArXiv_(identifier) ↩
Lahini, Yoav; Steinbrecher, Gregory R.; Bookatz, Adam D.; Englund, Dirk (2018). "Quantum logic using correlated one-dimensional quantum walks". npj Quantum Information. 4 (1): 2. arXiv:1501.04349. doi:10.1038/s41534-017-0050-2. /wiki/ArXiv_(identifier) ↩
Costales, R. J.; Gunning, A.; Dorlas, T. (2025). "Efficiency of Feynman's quantum computer". Physical Review A. 111 (2): 022615. arXiv:2309.09331. doi:10.1103/PhysRevA.111.022615. /wiki/ArXiv_(identifier) ↩