The energy of the ions, as well as the ion species and the composition of the target determine the depth of penetration of the ions in the solid: A monoenergetic ion beam will generally have a broad depth distribution. The average penetration depth is called the range of the ions. Under typical circumstances ion ranges will be between 10 nanometers and 1 micrometer. Thus, ion implantation is especially useful in cases where the chemical or structural change is desired to be near the surface of the target. Ions gradually lose their energy as they travel through the solid, both from occasional collisions with target atoms (which cause abrupt energy transfers) and from a mild drag from overlap of electron orbitals, which is a continuous process. The loss of ion energy in the target is called stopping and can be simulated with the binary collision approximation method.
Accelerator systems for ion implantation are generally classified into medium current (ion beam currents between 10 μA and ~2 mA), high current (ion beam currents up to ~30 mA), high energy (ion energies above 200 keV and up to 10 MeV), and very high dose (efficient implant of dose greater than 1016 ions/cm2).
All varieties of ion implantation beamline designs contain general groups of functional components (see image). The first major segment of an ion beamline includes an ion source used to generate the ion species. The source is closely coupled to biased electrodes for extraction of the ions into the beamline and most often to some means of selecting a particular ion species for transport into the main accelerator section.
The ion source is often made of materials with a high melting point such as tungsten, tungsten doped with lanthanum oxide, molybdenum and tantalum. Often, inside the ion source a plasma is created between two tungsten electrodes, called reflectors, using a gas often based on fluorine containing the ion to be implanted whether it is germanium, boron, or silicon, such as boron trifluoride, boron difluoride, germanium tetrafluoride or silicon tetrafluoride. Arsine gas or phosphine gas can be used in the ion source to provide arsenic or phosphorus respectively for implantation. The ion source also has an indirectly heated cathode. Alternatively this heated cathode can be used as one of the reflectors, eliminating the need for a dedicated one, or a directly heated cathode is used.
Oxygen or oxide based gases such as carbon dioxide can also be used for ions such as carbon. Hydrogen or hydrogen with xenon, krypton or argon may be added to the plasma to delay the degradation of tungsten components due to the halogen cycle. The hydrogen can come from a high pressure cylinder or from a hydrogen generator that uses electrolysis.
Repellers at each end of the ion source continually move the atoms from one end of the ion source to the other, resembling two mirrors pointed at each other constantly reflecting light.
The ions are extracted from the source by an extraction electrode outside the ion source through a slit shaped aperture in the source, then the ion beam then passes through an analysis magnet to select the ions that will be implanted and then passes through one or two linear accelerators (linacs) that accelerate the ions before they reach the wafer in a process chamber. In medium current ion implanters there is also a neutral ion trap before the process chamber to remove neutral ions from the ion beam.
Some dopants such as aluminum, are often not provided to the ion source as a gas but as a solid compound based on Chlorine or Iodine that is vaporized in a nearby crucible such as Aluminium iodide or Aluminium chloride or as a solid sputtering target inside the ion source made of Aluminium oxide or Aluminium nitride. Implanting antimony often requires the use of a vaporizer attached to the ion source, in which antimony trifluoride, antimony trioxide, or solid antimony are vaporized in a crucible and a carrier gas is used to route the vapors to an adjacent ion source, although it can also be implanted from a gas containing fluorine such as antimony hexafluoride or vaporized from liquid antimony pentafluoride. Gallium, Selenium and Indium are often implanted from solid sources such as selenium dioxide for selenium although it can also be implanted from hydrogen selenide. Crucibles often last 60–100 hours and prevent ion implanters from changing recipes or process parameters in less than 20–30 minutes. Ion sources can often last 300 hours.
The energies used in doping often vary from 1 KeV to 3 MeV and it is not possible to build an ion implanter capable of providing ions at any energy due to physical limitations. To increase the throughput of ion implanters, efforts have been made to increase the current of the beam created by the implanter. The beam can be scanned across the wafer magnetically, electrostatically, mechanically or with a combination of these techniques. A mass analyzer magnet is used to select the ions that will be implanted on the wafer. Ion implantation is also used in displays containing LTPS transistors.
Ion implantation was developed as a method of producing the p-n junction of photovoltaic devices in the late 1970s and early 1980s, along with the use of pulsed-electron beam for rapid annealing, although pulsed-electron beam for rapid annealing has not to date been used for commercial production. Ion implantation is not used in most photovoltaic silicon cells, instead, thermal diffusion doping is used.
One prominent method for preparing silicon on insulator (SOI) substrates from conventional silicon substrates is the SIMOX (separation by implantation of oxygen) process, wherein a buried high dose oxygen implant is converted to silicon oxide by a high temperature annealing process.
Mesotaxy is the term for the growth of a crystallographically matching phase underneath the surface of the host crystal (compare to epitaxy, which is the growth of the matching phase on the surface of a substrate). In this process, ions are implanted at a high enough energy and dose into a material to create a layer of a second phase, and the temperature is controlled so that the crystal structure of the target is not destroyed. The crystal orientation of the layer can be engineered to match that of the target, even though the exact crystal structure and lattice constant may be very different. For example, after the implantation of nickel ions into a silicon wafer, a layer of nickel silicide can be grown in which the crystal orientation of the silicide matches that of the silicon.
In some applications, for example prosthetic devices such as artificial joints, it is desired to have surfaces very resistant to both chemical corrosion and wear due to friction. Ion implantation is used in such cases to engineer the surfaces of such devices for more reliable performance. As in the case of tool steels, the surface modification caused by ion implantation includes both a surface compression which prevents crack propagation and an alloying of the surface to make it more chemically resistant to corrosion.
Ion implantation may be used to induce nano-dimensional particles in oxides such as sapphire and silica. The particles may be formed as a result of precipitation of the ion implanted species, they may be formed as a result of the production of a mixed oxide species that contains both the ion-implanted element and the oxide substrate, and they may be formed as a result of a reduction of the substrate, first reported by Hunt and Hampikian. Typical ion beam energies used to produce nanoparticles range from 50 to 150 keV, with ion fluences that range from 1016 to 1018 ions/cm2. The table below summarizes some of the work that has been done in this field for a sapphire substrate. A wide variety of nanoparticles can be formed, with size ranges from 1 nm on up to 20 nm and with compositions that can contain the implanted species, combinations of the implanted ion and substrate, or that are comprised solely from the cation associated with the substrate.
Composite materials based on dielectrics such as sapphire that contain dispersed metal nanoparticles are promising materials for optoelectronics and nonlinear optics.
Because ion implantation causes damage to the crystal structure of the target which is often unwanted, ion implantation processing is often followed by a thermal annealing. This can be referred to as damage recovery.
The amount of crystallographic damage can be enough to completely amorphize the surface of the target: i.e. it can become an amorphous solid (such a solid produced from a melt is called a glass). In some cases, complete amorphization of a target is preferable to a highly defective crystal: An amorphized film can be regrown at a lower temperature than required to anneal a highly damaged crystal. Amorphisation of the substrate can occur as a result of the beam damage. For example, yttrium ion implantation into sapphire at an ion beam energy of 150 keV to a fluence of 5*1016 Y+/cm2 produces an amorphous glassy layer approximately 110 nm in thickness, measured from the outer surface. [Hunt, 1999]
If there is a crystallographic structure to the target, and especially in semiconductor substrates where the crystal structure is more open, particular crystallographic directions offer much lower stopping than other directions. The result is that the range of an ion can be much longer if the ion travels exactly along a particular direction, for example the <110> direction in silicon and other diamond cubic materials. This effect is called ion channelling, and, like all the channelling effects, is highly nonlinear, with small variations from perfect orientation resulting in extreme differences in implantation depth. For this reason, most implantation is carried out a few degrees off-axis, where tiny alignment errors will have more predictable effects.
"Ion Implantation | Semiconductor Digest". Retrieved 21 June 2021. https://sst.semiconductor-digest.com/2015/12/ion-implantation/
"Ion Implantation in Silicon Technology" (PDF). Retrieved 2 March 2024. https://www.axcelis.com/wp-content/uploads/2019/02/Ion_Implantation_in_Silicon_Technology.pdf
"Ion implantation in CMOS Technology: Machine Challenges". Ion Implantation and Synthesis of Materials. 2006. pp. 213–238. doi:10.1007/978-3-540-45298-0_15. ISBN 978-3-540-23674-0. 978-3-540-23674-0
Rimini, Emanuele (27 November 2013). Ion Implantation: Basics to Device Fabrication. Springer. ISBN 978-1-4615-2259-1. 978-1-4615-2259-1
Hsieh, Tseh-Jen; Colvin, Neil (2014). "Improved ion source stability using H2 co-gas for fluoride based dopants". 2014 20th International Conference on Ion Implantation Technology (IIT). pp. 1–4. doi:10.1109/IIT.2014.6940042. ISBN 978-1-4799-5212-0. 978-1-4799-5212-0
"Source Materials Enable the Evolution of the Ion-Implantation Process". 8 February 2020. https://www.semiconductor-digest.com/source-materials-enable-the-evolution-of-the-ion-implantation-process/
Stellman, Jeanne Mager (28 February 1998). Encyclopaedia of Occupational Health and Safety. International Labour Organization. ISBN 978-92-2-109816-4. 978-92-2-109816-4
Handbook of Semiconductor Manufacturing Technology. CRC Press. 19 December 2017. ISBN 978-1-4200-1766-3. 978-1-4200-1766-3
Horsky, Thomas N. (April 1998). "Indirectly heated cathode arc discharge source for ion implantation of semiconductors". Review of Scientific Instruments. 69 (4): 1688–1690. Bibcode:1998RScI...69.1688H. doi:10.1063/1.1148866. /wiki/Bibcode_(identifier)
Tanjyo, Masayasu; Naito, Masao. "History of Ion Implanter and Its Future Perspective" (PDF). global-sei.com. Archived (PDF) from the original on 1 December 2024. https://global-sei.com/technology/tr/bn73/pdf/73-03.pdf
Sakai, Shigeki; Hamamoto, Nariaki; Inouchi, Yutaka; Umisedo, Sei; Miyamoto, Naoki (February 2014). "Ion sources for ion implantation technology (invited)". Review of Scientific Instruments. 85 (2): 02C313. Bibcode:2014RScI...85bC313S. doi:10.1063/1.4852315. PMID 24593650. /wiki/Bibcode_(identifier)
"Source Materials Enable the Evolution of the Ion-Implantation Process". 8 February 2020. https://www.semiconductor-digest.com/source-materials-enable-the-evolution-of-the-ion-implantation-process/
Tanjyo, Masayasu; Naito, Masao. "History of Ion Implanter and Its Future Perspective" (PDF). global-sei.com. Archived (PDF) from the original on 1 December 2024. https://global-sei.com/technology/tr/bn73/pdf/73-03.pdf
Hsieh, Tseh-Jen; Colvin, Neil K. (2016). "Exemplary Ion Source for the Implanting of Halogen and Oxygen Based Dopant Gases". 2016 21st International Conference on Ion Implantation Technology (IIT). pp. 1–4. doi:10.1109/IIT.2016.7882870. ISBN 978-1-5090-2024-9. 978-1-5090-2024-9
Hsieh, Tseh-Jen; Colvin, Neil (2014). "Improved ion source stability using H2 co-gas for fluoride based dopants". 2014 20th International Conference on Ion Implantation Technology (IIT). pp. 1–4. doi:10.1109/IIT.2014.6940042. ISBN 978-1-4799-5212-0. 978-1-4799-5212-0
"Production-worthy Al beams for SiC applications" (PDF). www.axcelis.com. Archived (PDF) from the original on 18 February 2024. https://www.axcelis.com/wp-content/uploads/2019/03/Production-Worthy-Al-beams-for-SiC-Applications.pdf
Handbook of Semiconductor Manufacturing Technology. CRC Press. 19 December 2017. ISBN 978-1-4200-1766-3. 978-1-4200-1766-3
Henderson, Christopher. "Ion Implanation Part 1 - Equipment" (PDF). www.semitracks.com. Semitracks. Archived (PDF) from the original on 18 February 2024. https://www.semitracks.com/newsletters/march/2012-march-newsletter.pdf
Walther, S.R.; Pedersen, B.O.; McKenna, C.M. (1991). "Ion sources for commercial ion implanter applications". Conference Record of the 1991 IEEE Particle Accelerator Conference. pp. 2088–2092. doi:10.1109/PAC.1991.164876. ISBN 0-7803-0135-8. 0-7803-0135-8
Satoh, Shu; Platow, Wilhelm; Kondratenko, Serguei; Rubin, Leonard; Mayfield, Patrick; Lessard, Ron; Bonacorsi, Genise; Jen, Causon; Whalen, Paul; Newman, Russ (10 January 2023). "Purion XEmax, Axcelis ultra-high energy implanter with Boost™ technology". MRS Advances. 7 (36): 1490–1494. doi:10.1557/s43580-022-00442-9. /wiki/Doi_(identifier)
Glavish, Hilton; Farley, Marvin (2018). "Review of Major Innovations in Beam Line Design". 2018 22nd International Conference on Ion Implantation Technology (IIT). pp. 9–18. doi:10.1109/IIT.2018.8807986. ISBN 978-1-5386-6828-3. 978-1-5386-6828-3
Glavish, Hilton; Farley, Marvin (2018). "Review of Major Innovations in Beam Line Design". 2018 22nd International Conference on Ion Implantation Technology (IIT). pp. 9–18. doi:10.1109/IIT.2018.8807986. ISBN 978-1-5386-6828-3. 978-1-5386-6828-3
Fundamentals of Semiconductor Manufacturing and Process Control. John Wiley & Sons. 26 May 2006. ISBN 978-0-471-79027-3. 978-0-471-79027-3
"Production-worthy Al beams for SiC applications" (PDF). www.axcelis.com. Archived (PDF) from the original on 18 February 2024. https://www.axcelis.com/wp-content/uploads/2019/03/Production-Worthy-Al-beams-for-SiC-Applications.pdf
"Source Materials Enable the Evolution of the Ion-Implantation Process". 8 February 2020. https://www.semiconductor-digest.com/source-materials-enable-the-evolution-of-the-ion-implantation-process/
Hsieh, Tseh-Jen; Colvin, Neil (2014). "Improved ion source stability using H2 co-gas for fluoride based dopants". 2014 20th International Conference on Ion Implantation Technology (IIT). pp. 1–4. doi:10.1109/IIT.2014.6940042. ISBN 978-1-4799-5212-0. 978-1-4799-5212-0
"Source Materials Enable the Evolution of the Ion-Implantation Process". 8 February 2020. https://www.semiconductor-digest.com/source-materials-enable-the-evolution-of-the-ion-implantation-process/
Hamm, Robert W.; Hamm, Marianne E. (2012). Industrial Accelerators and Their Applications. World Scientific. ISBN 978-981-4307-04-8. 978-981-4307-04-8
"Ion Implantation in Silicon Technology" (PDF). Retrieved 2 March 2024. https://www.axcelis.com/wp-content/uploads/2019/02/Ion_Implantation_in_Silicon_Technology.pdf
Takahashi, Naoya; Itoi, Suguru; Nakashima, Yoshiki; Zhao, Weijiang; Onoda, Hiroshi; Sakai, Shigeki (2015). "High temperature ion implanter for SiC and Si devices". 2015 15th International Workshop on Junction Technology (IWJT). pp. 6–7. doi:10.1109/IWJT.2015.7467062. ISBN 978-4-8634-8517-4. 978-4-8634-8517-4
Ion Implantation: Basics to Device Fabrication. Springer. 27 November 2013. ISBN 978-1-4615-2259-1. 978-1-4615-2259-1
Sinclair, Frank; Olson, Joe; Rodier, Dennis; Eidukonis, Alex; Thanigaivelan, Thirumal; Todorov, Stan (2014). "VIISta 900 3D: Advanced medium current implanter". 2014 20th International Conference on Ion Implantation Technology (IIT). pp. 1–4. doi:10.1109/IIT.2014.6940037. ISBN 978-1-4799-5212-0. 978-1-4799-5212-0
Kachurin, G.A.; Tyschenko, I.E.; Fedina, L.I. (May 1992). "High-temperature ion implantation in silicon". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 68 (1–4): 323–330. Bibcode:1992NIMPB..68..323K. doi:10.1016/0168-583X(92)96103-6. /wiki/Bibcode_(identifier)
Renau, Anthony (2010). "Device performance and yield — A new focus for ion implantation". 2010 International Workshop on Junction Technology Extended Abstracts. pp. 1–6. doi:10.1109/IWJT.2010.5475003. ISBN 978-1-4244-5866-0. 978-1-4244-5866-0
"Ion Implantation in Silicon Technology" (PDF). Retrieved 2 March 2024. https://www.axcelis.com/wp-content/uploads/2019/02/Ion_Implantation_in_Silicon_Technology.pdf
Olson, J.C.; Renau, A.; Buff, J. (1998). "Scanned beam uniformity control in the VIISta 810 ion implanter". 1998 International Conference on Ion Implantation Technology. Proceedings (Cat. No.98EX144). Vol. 1. pp. 169–172. doi:10.1109/IIT.1999.812079. ISBN 0-7803-4538-X. 0-7803-4538-X
"Beam scanning control device for ion implantation system". https://patents.google.com/patent/US4494005A/en
Vanderberg, Bo; Heres, Patrick; Eisner, Edward; Libby, Bruce; Valinski, Joseph; Huff, Weston. "Introducing Purion H, a Scanned Spot Beam High Currnet Ion Implanter" (PDF). www.axcelis.com. Axcelis Technologies. Archived (PDF) from the original on 28 December 2024. https://www.axcelis.com/wp-content/uploads/2019/03/IntroducingThePurionH_Vanderberg_FINAL.pdf
Turner, N. (1983). "Comparison of Beam Scanning Systems". Ion Implantation: Equipment and Techniques. pp. 126–142. doi:10.1007/978-3-642-69156-0_15. ISBN 978-3-642-69158-4. 978-3-642-69158-4
Current, Michael & Rubin, Leonard & Sinclair, Frank. (2018). Commercial Ion Implantation Systems.
Glavish, Hilton; Farley, Marvin (2018). "Review of Major Innovations in Beam Line Design". 2018 22nd International Conference on Ion Implantation Technology (IIT). pp. 9–18. doi:10.1109/IIT.2018.8807986. ISBN 978-1-5386-6828-3. 978-1-5386-6828-3
Armini, A. J.; Bunker, S. N.; Spitzer, M. B. (1982). Non-mass-analyzed ion implantation equipment for high volume solar cell production. 16th Photovoltaic Specialists Conference. pp. 895–899. Bibcode:1982pvsp.conf..895A. /wiki/Bibcode_(identifier)
Landis, G. A.; Armini, A. J.; Greenwald, A. C.; Kiesling, R. A. (1981). "Apparatus and technique for pulsed electron beam annealing for solar cell production". 15th Photovoltaic Specialists Conference: 976–980. Bibcode:1981pvsp.conf..976L. /wiki/Bibcode_(identifier)
Saga, Tatsuo (July 2010). "Advances in crystalline silicon solar cell technology for industrial mass production". NPG Asia Materials. 2 (3): 96–102. doi:10.1038/asiamat.2010.82. /wiki/Doi_(identifier)
Hunt, Eden; Hampikian, Janet (1999). "Ion implantation-induced nanoscale particle formation in Al2O3 and SiO2 via reduction". Acta Materialia. 47 (5): 1497–1511. Bibcode:1999AcMat..47.1497H. doi:10.1016/S1359-6454(99)00028-2. /wiki/Bibcode_(identifier)
Hunt, Eden; Hampikian, Janet (April 2001). "Implantation parameters affecting aluminum nano-particle formation in alumina". Journal of Materials Science. 36 (8): 1963–1973. doi:10.1023/A:1017562311310. S2CID 134817579. /wiki/Doi_(identifier)
Hunt, Eden; Hampikian, Janet. "Method for ion implantation induced embedded particle formation via reduction". uspto.gov. USPTO. Archived from the original on 9 March 2020. Retrieved 4 August 2017. https://web.archive.org/web/20200309064900/http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=/netahtml/PTO/srchnum.htm&r=1&f=G&l=50&s1=6294223.PN.&OS=PN/6294223&RS=PN/6294223
Werner, Z.; Pisarek, M.; Barlak, M.; Ratajczak, R.; Starosta, W.; Piekoszewski, J.; Szymczyk, W.; Grotzschel, R. (2009). "Chemical effects in Zr- and Co-implanted sapphire". Vacuum. 83: S57 – S60. Bibcode:2009Vacuu..83S..57W. doi:10.1016/j.vacuum.2009.01.022. /wiki/Bibcode_(identifier)
Alves, E.; Marques, C.; da Silva, R.C.; Monteiro, T.; Soares, J.; McHargue, C.; Ononye, L.C.; Allard, L.F (2003). "Structural and optical studies of Co and Ti implanted sapphire". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 207 (1): 55–62. Bibcode:2003NIMPB.207...55A. doi:10.1016/S0168-583X(03)00522-6. /wiki/Bibcode_(identifier)
Xiang, X; Zu, X T; Zhu, S; Wei, Q M; Zhang, C F; Sun, K; Wang, L M (28 May 2006). "ZnO nanoparticles embedded in sapphire fabricated by ion implantation and annealing". Nanotechnology. 17 (10): 2636–2640. Bibcode:2006Nanot..17.2636X. doi:10.1088/0957-4484/17/10/032. hdl:2027.42/49223. PMID 21727517. /wiki/Bibcode_(identifier)
Mota-Santiago, Pablo-Ernesto; Crespo-Sosa, Alejandro; Jimenez-Hernandez, Jose-Luis; Silva-Pereyra, Hector-Gabriel; Reyes-Esqueda, Jorge-Alejandro; Oliver, Alicia (2012). "Size characterisation of noble-metal nano-crystals formed in sapphire by ion irradiation and subsequent thermal annealing". Applied Surface Science. 259: 574–581. Bibcode:2012ApSS..259..574M. doi:10.1016/j.apsusc.2012.06.114. /wiki/Bibcode_(identifier)
Stepanov, A. L.; Marques, C.; Alves, E.; da Silva, R. C.; Silva, M. R.; Ganeev, R. A.; Ryasnyansky, A. I.; Usmanov, T. (2005). "Nonlinear optical properties of gold nanoparticles synthesized by ion implantation in sapphire matrix". Technical Physics Letters. 31 (8): 702–705. Bibcode:2005TePhL..31..702S. doi:10.1134/1.2035371. S2CID 123688388. /wiki/Bibcode_(identifier)
McHargue, C.J.; Ren, S.X.; Hunn, J.D (1998). "Nanometer-size dispersions of iron in sapphire prepared by ion implantation and annealing". Materials Science and Engineering: A. 253 (1): 1–7. doi:10.1016/S0921-5093(98)00722-9. /wiki/Doi_(identifier)
Xiang, X.; Zu, X. T.; Zhu, S.; Wang, L. M. (2004). "Optical properties of metallic nanoparticles in Ni-ion-implanted α-Al2O3 single crystals". Applied Physics Letters. 84 (1): 52–54. Bibcode:2004ApPhL..84...52X. doi:10.1063/1.1636817. /wiki/Bibcode_(identifier)
Sharma, S. K.; Pujari, P. K. (2017). "Embedded Si nanoclusters in α-alumina synthesized by ion implantation: An investigation using depth dependent Doppler broadening spectroscopy". Journal of Alloys and Compounds. 715: 247–253. doi:10.1016/j.jallcom.2017.04.285. /wiki/Doi_(identifier)
Xiang, X; Zu, X T; Zhu, S; Wang, L M; Shutthanandan, V; Nachimuthu, P; Zhang, Y (21 November 2008). "Photoluminescence of SnO 2 nanoparticles embedded in Al 2 O 3". Journal of Physics D: Applied Physics. 41 (22): 225102. doi:10.1088/0022-3727/41/22/225102. hdl:2027.42/64215. /wiki/Doi_(identifier)
Stepanov, A. L.; Marques, C.; Alves, E.; da Silva, R. C.; Silva, M. R.; Ganeev, R. A.; Ryasnyansky, A. I.; Usmanov, T. (2005). "Nonlinear optical properties of gold nanoparticles synthesized by ion implantation in sapphire matrix". Technical Physics Letters. 31 (8): 702–705. Bibcode:2005TePhL..31..702S. doi:10.1134/1.2035371. S2CID 123688388. /wiki/Bibcode_(identifier)
Werner, Z.; Pisarek, M.; Barlak, M.; Ratajczak, R.; Starosta, W.; Piekoszewski, J.; Szymczyk, W.; Grotzschel, R. (2009). "Chemical effects in Zr- and Co-implanted sapphire". Vacuum. 83: S57 – S60. Bibcode:2009Vacuu..83S..57W. doi:10.1016/j.vacuum.2009.01.022. /wiki/Bibcode_(identifier)
Alves, E.; Marques, C.; da Silva, R.C.; Monteiro, T.; Soares, J.; McHargue, C.; Ononye, L.C.; Allard, L.F (2003). "Structural and optical studies of Co and Ti implanted sapphire". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 207 (1): 55–62. Bibcode:2003NIMPB.207...55A. doi:10.1016/S0168-583X(03)00522-6. /wiki/Bibcode_(identifier)
Hunt, Eden; Hampikian, Janet (1999). "Ion implantation-induced nanoscale particle formation in Al2O3 and SiO2 via reduction". Acta Materialia. 47 (5): 1497–1511. Bibcode:1999AcMat..47.1497H. doi:10.1016/S1359-6454(99)00028-2. /wiki/Bibcode_(identifier)
Xiang, X; Zu, X T; Zhu, S; Wang, L M; Shutthanandan, V; Nachimuthu, P; Zhang, Y (21 November 2008). "Photoluminescence of SnO 2 nanoparticles embedded in Al 2 O 3". Journal of Physics D: Applied Physics. 41 (22): 225102. doi:10.1088/0022-3727/41/22/225102. hdl:2027.42/64215. /wiki/Doi_(identifier)
Xiang, X; Zu, X T; Zhu, S; Wei, Q M; Zhang, C F; Sun, K; Wang, L M (28 May 2006). "ZnO nanoparticles embedded in sapphire fabricated by ion implantation and annealing". Nanotechnology. 17 (10): 2636–2640. Bibcode:2006Nanot..17.2636X. doi:10.1088/0957-4484/17/10/032. hdl:2027.42/49223. PMID 21727517. /wiki/Bibcode_(identifier)
Werner, Z.; Pisarek, M.; Barlak, M.; Ratajczak, R.; Starosta, W.; Piekoszewski, J.; Szymczyk, W.; Grotzschel, R. (2009). "Chemical effects in Zr- and Co-implanted sapphire". Vacuum. 83: S57 – S60. Bibcode:2009Vacuu..83S..57W. doi:10.1016/j.vacuum.2009.01.022. /wiki/Bibcode_(identifier)
Mota-Santiago, Pablo-Ernesto; Crespo-Sosa, Alejandro; Jimenez-Hernandez, Jose-Luis; Silva-Pereyra, Hector-Gabriel; Reyes-Esqueda, Jorge-Alejandro; Oliver, Alicia (2012). "Size characterisation of noble-metal nano-crystals formed in sapphire by ion irradiation and subsequent thermal annealing". Applied Surface Science. 259: 574–581. Bibcode:2012ApSS..259..574M. doi:10.1016/j.apsusc.2012.06.114. /wiki/Bibcode_(identifier)
Stepanov, A. L.; Marques, C.; Alves, E.; da Silva, R. C.; Silva, M. R.; Ganeev, R. A.; Ryasnyansky, A. I.; Usmanov, T. (2005). "Nonlinear optical properties of gold nanoparticles synthesized by ion implantation in sapphire matrix". Technical Physics Letters. 31 (8): 702–705. Bibcode:2005TePhL..31..702S. doi:10.1134/1.2035371. S2CID 123688388. /wiki/Bibcode_(identifier)
Mota-Santiago, Pablo-Ernesto; Crespo-Sosa, Alejandro; Jimenez-Hernandez, Jose-Luis; Silva-Pereyra, Hector-Gabriel; Reyes-Esqueda, Jorge-Alejandro; Oliver, Alicia (2012). "Size characterisation of noble-metal nano-crystals formed in sapphire by ion irradiation and subsequent thermal annealing". Applied Surface Science. 259: 574–581. Bibcode:2012ApSS..259..574M. doi:10.1016/j.apsusc.2012.06.114. /wiki/Bibcode_(identifier)
Alves, E.; Marques, C.; da Silva, R.C.; Monteiro, T.; Soares, J.; McHargue, C.; Ononye, L.C.; Allard, L.F (2003). "Structural and optical studies of Co and Ti implanted sapphire". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 207 (1): 55–62. Bibcode:2003NIMPB.207...55A. doi:10.1016/S0168-583X(03)00522-6. /wiki/Bibcode_(identifier)
Alves, E.; Marques, C.; da Silva, R.C.; Monteiro, T.; Soares, J.; McHargue, C.; Ononye, L.C.; Allard, L.F (2003). "Structural and optical studies of Co and Ti implanted sapphire". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 207 (1): 55–62. Bibcode:2003NIMPB.207...55A. doi:10.1016/S0168-583X(03)00522-6. /wiki/Bibcode_(identifier)
McHargue, C.J.; Ren, S.X.; Hunn, J.D (1998). "Nanometer-size dispersions of iron in sapphire prepared by ion implantation and annealing". Materials Science and Engineering: A. 253 (1): 1–7. doi:10.1016/S0921-5093(98)00722-9. /wiki/Doi_(identifier)
Xiang, X.; Zu, X. T.; Zhu, S.; Wang, L. M. (2004). "Optical properties of metallic nanoparticles in Ni-ion-implanted α-Al2O3 single crystals". Applied Physics Letters. 84 (1): 52–54. Bibcode:2004ApPhL..84...52X. doi:10.1063/1.1636817. /wiki/Bibcode_(identifier)
Sharma, S. K.; Pujari, P. K. (2017). "Embedded Si nanoclusters in α-alumina synthesized by ion implantation: An investigation using depth dependent Doppler broadening spectroscopy". Journal of Alloys and Compounds. 715: 247–253. doi:10.1016/j.jallcom.2017.04.285. /wiki/Doi_(identifier)
Xiang, X; Zu, X T; Zhu, S; Wang, L M; Shutthanandan, V; Nachimuthu, P; Zhang, Y (21 November 2008). "Photoluminescence of SnO 2 nanoparticles embedded in Al 2 O 3". Journal of Physics D: Applied Physics. 41 (22): 225102. doi:10.1088/0022-3727/41/22/225102. hdl:2027.42/64215. /wiki/Doi_(identifier)
Alves, E.; Marques, C.; da Silva, R.C.; Monteiro, T.; Soares, J.; McHargue, C.; Ononye, L.C.; Allard, L.F (2003). "Structural and optical studies of Co and Ti implanted sapphire". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 207 (1): 55–62. Bibcode:2003NIMPB.207...55A. doi:10.1016/S0168-583X(03)00522-6. /wiki/Bibcode_(identifier)
Hunt, Eden; Hampikian, Janet (1999). "Ion implantation-induced nanoscale particle formation in Al2O3 and SiO2 via reduction". Acta Materialia. 47 (5): 1497–1511. Bibcode:1999AcMat..47.1497H. doi:10.1016/S1359-6454(99)00028-2. /wiki/Bibcode_(identifier)
Hunt, Eden; Hampikian, Janet (1999). "Ion implantation-induced nanoscale particle formation in Al2O3 and SiO2 via reduction". Acta Materialia. 47 (5): 1497–1511. Bibcode:1999AcMat..47.1497H. doi:10.1016/S1359-6454(99)00028-2. /wiki/Bibcode_(identifier)
Hunt, Eden; Hampikian, Janet (April 2001). "Implantation parameters affecting aluminum nano-particle formation in alumina". Journal of Materials Science. 36 (8): 1963–1973. doi:10.1023/A:1017562311310. S2CID 134817579. /wiki/Doi_(identifier)
Ohring, Milton (2002). Materials science of thin films : deposition and structure (2nd ed.). San Diego, CA: Academic Press. ISBN 9780125249751. OCLC 162575935. 9780125249751