Von Neumann's original theorem6 was motivated by game theory and applies to the case where
Under these assumptions, von Neumann proved that
In the context of two-player zero-sum games, the sets X {\displaystyle X} and Y {\displaystyle Y} correspond to the strategy sets of the first and second player, respectively, which consist of lotteries over their actions (so-called mixed strategies), and their payoffs are defined by the payoff matrix A {\displaystyle A} . The function f ( x , y ) {\displaystyle f(x,y)} encodes the expected value of the payoff to the first player when the first player plays the strategy x {\displaystyle x} and the second player plays the strategy y {\displaystyle y} .
Von Neumann's minimax theorem can be generalized to domains that are compact and convex, and to functions that are concave in their first argument and convex in their second argument (known as concave-convex functions). Formally, let X ⊆ R n {\displaystyle X\subseteq \mathbb {R} ^{n}} and Y ⊆ R m {\displaystyle Y\subseteq \mathbb {R} ^{m}} be compact convex sets. If f : X × Y → R {\displaystyle f:X\times Y\rightarrow \mathbb {R} } is a continuous function that is concave-convex, i.e.
Then we have that
Sion's minimax theorem is a generalization of von Neumann's minimax theorem due to Maurice Sion,7 relaxing the requirement that X and Y be standard simplexes and that f be bilinear. It states:89
Let X {\displaystyle X} be a convex subset of a linear topological space and let Y {\displaystyle Y} be a compact convex subset of a linear topological space. If f {\displaystyle f} is a real-valued function on X × Y {\displaystyle X\times Y} with
Simons, Stephen (1995), Du, Ding-Zhu; Pardalos, Panos M. (eds.), "Minimax Theorems and Their Proofs", Minimax and Applications, Nonconvex Optimization and Its Applications, vol. 4, Boston, MA: Springer US, pp. 1–23, doi:10.1007/978-1-4613-3557-3_1, ISBN 978-1-4613-3557-3, retrieved 2024-10-27 978-1-4613-3557-3 ↩
Von Neumann, J. (1928). "Zur Theorie der Gesellschaftsspiele". Math. Ann. 100: 295–320. doi:10.1007/BF01448847. S2CID 122961988. /wiki/Mathematische_Annalen ↩
John L Casti (1996). Five golden rules: great theories of 20th-century mathematics – and why they matter. New York: Wiley-Interscience. p. 19. ISBN 978-0-471-00261-1. 978-0-471-00261-1 ↩
Du, Ding-Zhu; Pardalos, Panos M., eds. (1995). Minimax and Applications. Boston, MA: Springer US. ISBN 9781461335573. 9781461335573 ↩
Brandt, Felix; Brill, Markus; Suksompong, Warut (2016). "An ordinal minimax theorem". Games and Economic Behavior. 95: 107–112. arXiv:1412.4198. doi:10.1016/j.geb.2015.12.010. S2CID 360407. /wiki/ArXiv_(identifier) ↩
Sion, Maurice (1958). "On general minimax theorems". Pacific Journal of Mathematics. 8 (1): 171–176. doi:10.2140/pjm.1958.8.171. MR 0097026. Zbl 0081.11502. https://doi.org/10.2140%2Fpjm.1958.8.171 ↩
Komiya, Hidetoshi (1988). "Elementary proof for Sion's minimax theorem". Kodai Mathematical Journal. 11 (1): 5–7. doi:10.2996/kmj/1138038812. MR 0930413. Zbl 0646.49004. http://projecteuclid.org/euclid.kmj/1138038812 ↩