Although there are several definitions of special sorts of Euler system, there seems to be no published definition of an Euler system that covers all known cases. But it is possible to say roughly what an Euler system is, as follows:
Kazuya Kato refers to the elements in an Euler system as "arithmetic incarnations of zeta" and describes the property of being an Euler system as "an arithmetic reflection of the fact that these incarnations are related to special values of Euler products".1
For every square-free positive integer n pick an n-th root ζn of 1, with ζmn = ζmζn for m,n coprime. Then the cyclotomic Euler system is the set of numbers αn = 1 − ζn. These satisfy the relations
where l is a prime not dividing n and Fl is a Frobenius automorphism with Fl(ζn) = ζln. Kolyvagin used this Euler system to give an elementary proof of the Gras conjecture.
Kolyvagin constructed an Euler system from the Heegner points of an elliptic curve, and used this to show that in some cases the Tate-Shafarevich group is finite.
Kato's Euler system consists of certain elements occurring in the algebraic K-theory of modular curves. These elements—named Beilinson elements after Alexander Beilinson who introduced them in Beilinson (1984)—were used by Kazuya Kato in Kato (2004) to prove one divisibility in Barry Mazur's main conjecture of Iwasawa theory for elliptic curves.2
Kato 2007, §2.5.1 - Kato, Kazuya (2007), "Iwasawa theory and generalizations", in Marta Sanz-Solé; Javier Soria; Juan Luis Varona; et al. (eds.), International Congress of Mathematicians (PDF), vol. I, Zürich: European Mathematical Society, pp. 335–357, MR 2334196, retrieved 2010-08-12 http://www.icm2006.org/proceedings/Vol_I/18.pdf ↩
Kato 2007 - Kato, Kazuya (2007), "Iwasawa theory and generalizations", in Marta Sanz-Solé; Javier Soria; Juan Luis Varona; et al. (eds.), International Congress of Mathematicians (PDF), vol. I, Zürich: European Mathematical Society, pp. 335–357, MR 2334196, retrieved 2010-08-12 http://www.icm2006.org/proceedings/Vol_I/18.pdf ↩