In Cullen's paper “Granzymes in Cancer and Immunity” he describes the process of “immune surveillance [as] the process whereby precancerous and malignant cells are recognized by the immune system as damaged and are consequently targeted for elimination”. For a tumor to progress it requires conditions within the body and surrounding area to be growth-promoting. Almost all people have suitable immune cells to fight off tumors in the body. Studies have shown that the immune system even has the ability to prevent precancerous cells from growing and arbitrate the regression of established tumors. The dangerous thing about cancer cells is they have the ability to inhibit the function of the immune system. Although a tumor may be in its beginning stage and very weak, it may be giving off chemicals that inhibit the function of the immune system allowing it to grow and become harmful. Tests have shown that mice without granzymes and perforins are at high risk to have tumors spread throughout their body.
Tumors have the ability to escape from immune surveillance by secreting immunosuppressive TGF-β. This inhibits proliferation and activation of T cells. TGF-β production is the most potent mechanism of immune avoidance used by tumors. TGF-β inhibits expression of five different cytotoxic genes including perforin, granzyme A, and granzyme B, which then inhibits T cell-mediated tumor clearance.
Bots M, Medema JP (December 2006). "Granzymes at a glance". Journal of Cell Science. 119 (Pt 24): 5011–4. doi:10.1242/jcs.03239. PMID 17158907. https://doi.org/10.1242%2Fjcs.03239
Walch M, Dotiwala F, Mulik S, et al. (June 2014). "Cytotoxic cells kill intracellular bacteria through granulysin-mediated delivery of granzymes". Cell. 157 (6): 1309–23. doi:10.1016/j.cell.2014.03.062. PMC 4090916. PMID 24906149. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4090916
Peters PJ, Borst J, Oorschot V, et al. (May 1991). "Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes". The Journal of Experimental Medicine. 173 (5): 1099–109. doi:10.1084/jem.173.5.1099. PMC 2118839. PMID 2022921. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2118839
Thomas MP, Whangbo J, McCrossan G, et al. (June 2014). "Leukocyte protease binding to nucleic acids promotes nuclear localization and cleavage of nucleic acid binding proteins". Journal of Immunology. 192 (11): 5390–7. doi:10.4049/jimmunol.1303296. PMC 4041364. PMID 24771851. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4041364
Bots M, Medema JP (December 2006). "Granzymes at a glance". Journal of Cell Science. 119 (Pt 24): 5011–4. doi:10.1242/jcs.03239. PMID 17158907. https://doi.org/10.1242%2Fjcs.03239
Walch M, Dotiwala F, Mulik S, et al. (June 2014). "Cytotoxic cells kill intracellular bacteria through granulysin-mediated delivery of granzymes". Cell. 157 (6): 1309–23. doi:10.1016/j.cell.2014.03.062. PMC 4090916. PMID 24906149. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4090916
Marcet-Palacios M, Duggan BL, Shostak I, et al. (December 2011). "Granzyme B inhibits vaccinia virus production through proteolytic cleavage of eukaryotic initiation factor 4 gamma 3". PLOS Pathogens. 7 (12): e1002447. doi:10.1371/journal.ppat.1002447. PMC 3240606. PMID 22194691. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3240606
Thomas MP, Whangbo J, McCrossan G, et al. (June 2014). "Leukocyte protease binding to nucleic acids promotes nuclear localization and cleavage of nucleic acid binding proteins". Journal of Immunology. 192 (11): 5390–7. doi:10.4049/jimmunol.1303296. PMC 4041364. PMID 24771851. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4041364
Hendel A, Hiebert PR, Boivin WA, Williams SJ, Granville DJ (April 2010). "Granzymes in age-related cardiovascular and pulmonary diseases". Cell Death and Differentiation. 17 (4): 596–606. doi:10.1038/cdd.2010.5. PMID 20139894. https://doi.org/10.1038%2Fcdd.2010.5
Hiebert PR, Granville DJ (December 2012). "Granzyme B in injury, inflammation, and repair". Trends in Molecular Medicine. 18 (12): 732–41. doi:10.1016/j.molmed.2012.09.009. PMID 23099058. /wiki/Doi_(identifier)
Hiebert PR, Boivin WA, Zhao H, McManus BM, Granville DJ (2013). "Perforin and granzyme B have separate and distinct roles during atherosclerotic plaque development in apolipoprotein E knockout mice". PLOS ONE. 8 (10): e78939. Bibcode:2013PLoSO...878939H. doi:10.1371/journal.pone.0078939. PMC 3811993. PMID 24205352. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3811993
Chamberlain CM, Ang LS, Boivin WA, et al. (February 2010). "Perforin-independent extracellular granzyme B activity contributes to abdominal aortic aneurysm". The American Journal of Pathology. 176 (2): 1038–49. doi:10.2353/ajpath.2010.090700. PMC 2808106. PMID 20035050. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808106
Hsu I, Parkinson LG, Shen Y, et al. (2014). "Serpina3n accelerates tissue repair in a diabetic mouse model of delayed wound healing". Cell Death & Disease. 5 (10): e1458. doi:10.1038/cddis.2014.423. PMC 4237249. PMID 25299783. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237249
Hendel A, Hsu I, Granville DJ (July 2014). "Granzyme B releases vascular endothelial growth factor from extracellular matrix and induces vascular permeability". Laboratory Investigation. 94 (7): 716–25. doi:10.1038/labinvest.2014.62. PMC 4074428. PMID 24791744. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074428
Hsu I, Parkinson LG, Shen Y, et al. (2014). "Serpina3n accelerates tissue repair in a diabetic mouse model of delayed wound healing". Cell Death & Disease. 5 (10): e1458. doi:10.1038/cddis.2014.423. PMC 4237249. PMID 25299783. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237249
Hiebert PR, Wu D, Granville DJ (October 2013). "Granzyme B degrades extracellular matrix and contributes to delayed wound closure in apolipoprotein E knockout mice". Cell Death and Differentiation. 20 (10): 1404–14. doi:10.1038/cdd.2013.96. PMC 3770318. PMID 23912712. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3770318
Hiebert PR, Boivin WA, Abraham T, Pazooki S, Zhao H, Granville DJ (June 2011). "Granzyme B contributes to extracellular matrix remodeling and skin aging in apolipoprotein E knockout mice". Experimental Gerontology. 46 (6): 489–99. doi:10.1016/j.exger.2011.02.004. PMID 21316440. S2CID 33176028. /wiki/Doi_(identifier)
Ewen CL, Kane KP, Bleackley RC (January 2012). "A quarter century of granzymes". Cell Death and Differentiation. 19 (1): 28–35. doi:10.1038/cdd.2011.153. PMC 3252830. PMID 22052191. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3252830
Cullen SP, Brunet M, Martin SJ (April 2010). "Granzymes in cancer and immunity". Cell Death and Differentiation. 17 (4): 616–23. doi:10.1038/cdd.2009.206. PMID 20075940. https://doi.org/10.1038%2Fcdd.2009.206
Cullen SP, Brunet M, Martin SJ (April 2010). "Granzymes in cancer and immunity". Cell Death and Differentiation. 17 (4): 616–23. doi:10.1038/cdd.2009.206. PMID 20075940. https://doi.org/10.1038%2Fcdd.2009.206
Cullen SP, Brunet M, Martin SJ (April 2010). "Granzymes in cancer and immunity". Cell Death and Differentiation. 17 (4): 616–23. doi:10.1038/cdd.2009.206. PMID 20075940. https://doi.org/10.1038%2Fcdd.2009.206
Trapani JA (2001). "Granzymes: a family of lymphocyte granule serine proteases". Genome Biology. 2 (12): REVIEWS3014. doi:10.1186/gb-2001-2-12-reviews3014. PMC 138995. PMID 11790262. /wiki/Joseph_Trapani_(immunologist)
Cullen SP, Brunet M, Martin SJ (April 2010). "Granzymes in cancer and immunity". Cell Death and Differentiation. 17 (4): 616–23. doi:10.1038/cdd.2009.206. PMID 20075940. https://doi.org/10.1038%2Fcdd.2009.206
Cullen SP, Brunet M, Martin SJ (April 2010). "Granzymes in cancer and immunity". Cell Death and Differentiation. 17 (4): 616–23. doi:10.1038/cdd.2009.206. PMID 20075940. https://doi.org/10.1038%2Fcdd.2009.206
Cullen SP, Brunet M, Martin SJ (April 2010). "Granzymes in cancer and immunity". Cell Death and Differentiation. 17 (4): 616–23. doi:10.1038/cdd.2009.206. PMID 20075940. https://doi.org/10.1038%2Fcdd.2009.206