The one-dimensional cutting stock problem as applied in the paper / plastic film industries, involves cutting jumbo rolls into smaller ones. This is done by generating cutting patterns typically to minimise waste. Once such a solution has been produced, one may seek to minimise the knife changes, by re-sequencing the patterns (up and down in the figure), or moving rolls left or right within each pattern. These moves do not affect the waste of the solution.
In the above figure, patterns (width no more than 198) are rows; knife changes are indicated by the small white circles; for example, patterns 2-3-4 have a roll of size 42.5 on the left - the corresponding knife does not have to move. Each pattern represents a TSP set, one of whose permutations must be visited. For instance, for the last pattern, which contains two repeated sizes (twice each), there are 5! / (2! × 2!) = 30 permutations. The number of possible solutions to the above instance is 12! × (5!)6 × (6!)4 × (7!)2 / ((2!)9 × (3!)2) ≈ 5.3 × 1035. The above solution contains 39 knife changes, and has been obtained by a heuristic; it is not known whether this is optimal. Transformations into the regular TSP, as described in 6 would involve a TSP with 5,520 nodes.
C.E. Noon, "The Generalized Traveling Salesman Problem", PhD dissertation, 1988. https://hdl.handle.net/2027.42/161841 ↩
Noon, Charles E.; Bean, James C. (February 1993). "An efficient transformation of the generalized traveling salesman problem". INFOR: Information Systems and Operational Research. 31 (1): 39–44. doi:10.1080/03155986.1993.11732212. hdl:2027.42/6833. /wiki/Doi_(identifier) ↩
Satyanarayana G. Manyam, Sivakumar Rathinam, Swaroop Darbha, David Casbeer, Yongcan Cao, Phil Chandler (2016). "GPS Denied UAV Routing with Communication Constraints". Journal of Intelligent & Robotic Systems. 84 (1–4): 691–703. doi:10.1007/s10846-016-0343-2. S2CID 33884807.{{cite journal}}: CS1 maint: multiple names: authors list (link) /wiki/Doi_(identifier) ↩
Satyanarayana G. Manyam, Sivakumar Rathinam (2016). "On Tightly Bounding the Dubins Traveling Salesman's Optimum". Journal of Dynamic Systems, Measurement, and Control. 140 (7): 071013. arXiv:1506.08752. doi:10.1115/1.4039099. S2CID 16191780. /wiki/ArXiv_(identifier) ↩
Satyanarayana G. Manyam, Sivakumar Rathinam, David Casbeer, Eloy Garcia (2017). "Tightly Bounding the Shortest Dubins Paths Through a Sequence of Points". Journal of Intelligent & Robotic Systems. 88 (2–4): 495–511. doi:10.1007/s10846-016-0459-4. S2CID 30943273.{{cite journal}}: CS1 maint: multiple names: authors list (link) /wiki/Doi_(identifier) ↩