The assumptions of MLM that hold for clustered data also apply to repeated measures:
One of the assumptions of using MLM for growth curve modeling is that all subjects show the same relationship over time (e.g. linear, quadratic etc.). Another assumption of MLM for growth curve modeling is that the observed changes are related to the passage of time.4
Mathematically, multilevel analysis with repeated measures is very similar to the analysis of data in which subjects are clustered in groups. However, one point to note is that time-related predictors must be explicitly entered into the model to evaluate trend analyses and to obtain an overall test of the repeated measure. Furthermore, interpretation of these analyses is dependent on the scale of the time variable (i.e. how it is coded).
Repeated measures analysis of variance (RM-ANOVA) has been traditionally used for analysis of repeated measures designs. However, violation of the assumptions of RM-ANOVA can be problematic. Multilevel modeling (MLM) is commonly used for repeated measures designs because it presents an alternative approach to analyzing this type of data with three main advantages over RM-ANOVA:5
An alternative method of growth curve analysis is latent growth curve modeling using structural equation modeling (SEM). This approach will provide the same estimates as the multilevel modeling approach, provided that the model is specified identically in SEM. However, there are circumstances in which either MLM or SEM are preferable:1112
The distinction between multilevel modeling and latent growth curve analysis has become less defined. Some statistical programs incorporate multilevel features within their structural equation modeling software, and some multilevel modeling software is beginning to add latent growth curve features.
Multilevel modeling with repeated measures data is computationally complex. Computer software capable of performing these analyses may require data to be represented in “long form” as opposed to “wide form” prior to analysis. In long form, each subject’s data is represented in several rows – one for every “time” point (observation of the dependent variable). This is opposed to wide form in which there is one row per subject, and the repeated measures are represented in separate columns. Also note that, in long form, time invariant variables are repeated across rows for each subject. See below for an example of wide form data transposed into long form:
Wide form:
Long form:
Hoffman, Lesa; Rovine, Michael J. (2007). "Multilevel models for the experimental psychologist: Foundations and illustrative examples". Behavior Research Methods. 39 (1): 101–117. doi:10.3758/BF03192848. PMID 17552476. https://doi.org/10.3758%2FBF03192848 ↩
Curran, Patrick J.; Obeidat, Khawla; Losardo, Diane (2010). "Twelve Frequently Asked Questions About Growth Curve Modeling". Journal of Cognition and Development. 11 (2): 121–136. doi:10.1080/15248371003699969. PMC 3131138. PMID 21743795. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131138 ↩
Snijders, Tom A.B.; Bosker, Roel J. (2002). Multilevel analysis : an introduction to basic and advanced multilevel modeling (Reprint. ed.). London: Sage Publications. ISBN 978-0761958901. 978-0761958901 ↩
Hox, Joop (2005). Multilevel and SEM Approached to Growth Curve Modeling (PDF) ([Repr.]. ed.). Chichester: Wiley. ISBN 978-0-470-86080-9. 978-0-470-86080-9 ↩
Quené, Hugo; van den Bergh, Huub (2004). "On multi-level modeling of data from repeated measures designs: a tutorial". Speech Communication. 43 (1–2): 103–121. CiteSeerX 10.1.1.2.8982. doi:10.1016/j.specom.2004.02.004. /wiki/CiteSeerX_(identifier) ↩
Cohen, Jacob; Cohen, Patricia; West, Stephen G.; Aiken, Leona S. (2003-10-03). Applied multiple regression/correlation analysis for the behavioral sciences (3. ed.). Mahwah, NJ [u.a.]: Erlbaum. ISBN 9780805822236. 9780805822236 ↩
Molenberghs, Geert (2005). Models for discrete longitudinal data. New York: Springer Science+Business Media, Inc. ISBN 978-0387251448. 978-0387251448 ↩
Overall, John E.; Tonidandel, Scott (2007). "Analysis of Data from a Controlled Repeated Measurements Design with Baseline-Dependent Dropouts". Methodology: European Journal of Research Methods for the Behavioral and Social Sciences. 3 (2): 58–66. doi:10.1027/1614-2241.3.2.58. /wiki/Doi_(identifier) ↩
Overall, John; Ahn, Chul; Shivakumar, C.; Kalburgi, Yallapa (1999). "Problematic formulations of SAS PROC.MIXED models for repeated measurements". Journal of Biopharmaceutical Statistics. 9 (1): 189–216. doi:10.1081/BIP-100101008. PMID 10091918. /wiki/Doi_(identifier) ↩