Shown below is a retrosynthetic analysis of phenylacetic acid:
In planning the synthesis, two synthons are identified. A nucleophilic "-COOH" group, and an electrophilic "PhCH2+" group. Both synthons do not exist as written; synthetic equivalents corresponding to the synthons are reacted to produce the desired product. In this case, the cyanide anion is the synthetic equivalent for the −COOH synthon, while benzyl bromide is the synthetic equivalent for the benzyl synthon.
The synthesis of phenylacetic acid determined by retrosynthetic analysis is thus:
In fact, phenylacetic acid has been synthesized from benzyl cyanide,9 itself prepared by the analogous reaction of benzyl bromide with sodium cyanide.10
Manipulation of functional groups can lead to significant reductions in molecular complexity.
Numerous chemical targets have distinct stereochemical demands. Stereochemical transformations (such as the Claisen rearrangement and Mitsunobu reaction) can remove or transfer the desired chirality thus simplifying the target.
Directing a synthesis toward a desirable intermediate can greatly narrow the focus of analysis. This allows bidirectional search techniques.
The application of transformations to retrosynthetic analysis can lead to powerful reductions in molecular complexity. Unfortunately, powerful transform-based retrons are rarely present in complex molecules, and additional synthetic steps are often needed to establish their presence.
The identification of one or more key bond disconnections may lead to the identification of key substructures or difficult to identify rearrangement transformations in order to identify the key structures.
Robinson, R. (1917). "LXIII. A Synthesis of Tropinone". Journal of the Chemical Society, Transactions. 111: 762–768. doi:10.1039/CT9171100762. https://zenodo.org/record/1429739 ↩
Ugi, Ivar; Bauer, Johannes; Bley, Klemens; Dengler, Alf; Dietz, Andreas; Fontain, Eric; Gruber, Bernhard; Herges, Rainer; Knauer, Michael; Reitsam, Klaus; Stein, Natalie (1993). "Computer-Assisted Solution of Chemical Problems—The Historical Development and the Present State of the Art of a New Discipline of Chemistry". Angewandte Chemie International Edition in English. 32 (2): 201–227. doi:10.1002/anie.199302011. https://doi.org/10.1002/anie.199302011 ↩
Vléduts, G.É. (1963). "Concerning one system of classification and codification of organic reactions". Information Storage and Retrieval. 1 (2–3): 117–146. doi:10.1016/0020-0271(63)90013-5. https://www.sciencedirect.com/science/article/abs/pii/0020027163900135 ↩
Corey, E. J. (1967). "General methods for the construction of complex molecules". Pure and Applied Chemistry. 14: 19–38. doi:10.1351/pac196714010019. https://doi.org/10.1351/pac196714010019 ↩
E. J. Corey, X-M. Cheng (1995). The Logic of Chemical Synthesis. New York: Wiley. ISBN 978-0-471-11594-6. 978-0-471-11594-6 ↩
E. J. Corey (1988). "Retrosynthetic Thinking – Essentials and Examples". Chem. Soc. Rev. 17: 111–133. doi:10.1039/CS9881700111. /wiki/E._J._Corey ↩
E. J. Corey (1991). "The Logic of Chemical Synthesis: Multistep Synthesis of Complex Carbogenic Molecules (Nobel Lecture)" (Reprint). Angewandte Chemie International Edition in English. 30 (5): 455–465. doi:10.1002/anie.199104553. /wiki/E._J._Corey ↩
James Law et.al:"Route Designer: A Retrosynthetic Analysis Tool Utilizing Automated Retrosynthetic Rule Generation", Journal of Chemical Information and Modelling (ACS JCIM) Publication Date (Web): February 6, 2009; doi:10.1021/ci800228y, http://pubs.acs.org/doi/abs/10.1021/ci800228y /wiki/Doi_(identifier) ↩
Wilhelm Wenner (1963). "Phenylacetamide". Organic Syntheses; Collected Volumes, vol. 4, p. 760. http://www.orgsyn.org/demo.aspx?prep=cv4p0760 ↩
Roger Adams; A. F. Thal (1941). "Benzyl Cyanide". Organic Syntheses{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 1, p. 107. http://www.orgsyn.org/demo.aspx?prep=cv1p0107 ↩