CuPy implements NumPy/SciPy-compatible APIs, as well as features to write user-defined GPU kernels or access low-level APIs.
The same set of APIs defined in the NumPy package (numpy.*) are available under cupy.* package.
The same set of APIs defined in the SciPy package (scipy.*) are available under cupyx.scipy.* package.
Okuta, Ryosuke; Unno, Yuya; Nishino, Daisuke; Hido, Shohei; Loomis, Crissman (2017). CuPy: A NumPy-Compatible Library for NVIDIA GPU Calculations (PDF). Proceedings of Workshop on Machine Learning Systems (LearningSys) in The Thirty-first Annual Conference on Neural Information Processing Systems (NIPS). http://learningsys.org/nips17/assets/papers/paper_16.pdf
"CuPy 9.0 Brings AMD GPU Support To This Numpy-Compatible Library - Phoronix". Phoronix. 29 April 2021. Retrieved 21 June 2022. https://www.phoronix.com/scan.php?page=news_item&px=CuPy-9.0-Released
"AMD Leads High Performance Computing Towards Exascale and Beyond". 28 June 2021. Retrieved 21 June 2022. Most recently, CuPy, an open-source array library with Python, has expanded its traditional GPU support with the introduction of version 9.0 that now offers support for the ROCm stack for GPU-accelerated computing. https://ir.amd.com/news-events/press-releases/detail/1012/amd-leads-high-performance-computing-towards-exascale-and
"Preferred Networks released Version 2 of Chainer, an Open Source framework for Deep Learning - Preferred Networks, Inc". 2 June 2017. Retrieved 18 June 2022. https://www.preferred.jp/en/news/pr20170602/
"NumPy". numpy.org. Retrieved 21 June 2022. https://numpy.org/
Gorelick, Micha; Ozsvald, Ian (April 2020). High Performance Python: Practical Performant Programming for Humans (2nd ed.). O'Reilly Media, Inc. p. 190. ISBN 9781492055020. 9781492055020
Oak Ridge Leadership Computing Facility. "Installing CuPy". OLCF User Documentation. Retrieved 21 June 2022. /wiki/Oak_Ridge_Leadership_Computing_Facility
National Energy Research Scientific Computing Center. "Using Python on Perlmutter". NERSC Documentation. Retrieved 21 June 2022. /wiki/National_Energy_Research_Scientific_Computing_Center
ETH Zurich. "CuPy". ScientificComputing. Retrieved 21 June 2022. /wiki/ETH_Zurich
National Institute of Advanced Industrial Science and Technology. "Chainer". ABCI 2.0 User Guide. Retrieved 21 June 2022. /wiki/National_Institute_of_Advanced_Industrial_Science_and_Technology
"Sponsored Projects - NumFOCUS". Retrieved 8 September 2024. https://numfocus.org/sponsored-projects
"Overview". CuPy documentation. Retrieved 18 June 2022. https://docs.cupy.dev/en/latest/overview.html
"Comparison Table". CuPy documentation. Retrieved 18 June 2022. https://docs.cupy.dev/en/latest/reference/comparison.html
"CUDA Python | NVIDIA Developer". Retrieved 21 June 2022. https://developer.nvidia.com/cuda-python
"Welcome to DLPack's documentation!". DLPack 0.6.0 documentation. Retrieved 21 June 2022. https://dmlc.github.io/dlpack/latest/
"CUDA Array Interface (Version 3)". Numba 0.55.2+0.g2298ad618.dirty-py3.7-linux-x86_64.egg documentation. Retrieved 21 June 2022. https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html
"NEP 13 — A mechanism for overriding Ufuncs — NumPy Enhancement Proposals". numpy.org. Retrieved 21 June 2022. https://numpy.org/neps/nep-0013-ufunc-overrides.html
"NEP 18 — A dispatch mechanism for NumPy's high level array functions — NumPy Enhancement Proposals". numpy.org. Retrieved 21 June 2022. https://numpy.org/neps/nep-0018-array-function-protocol.html
Charles R Harris; K. Jarrod Millman; Stéfan J. van der Walt; et al. (16 September 2020). "Array programming with NumPy" (PDF). Nature. 585 (7825): 357–362. arXiv:2006.10256. doi:10.1038/S41586-020-2649-2. ISSN 1476-4687. PMC 7759461. PMID 32939066. Wikidata Q99413970. https://www.nature.com/articles/s41586-020-2649-2.pdf
"2021 report - Python Data APIs Consortium" (PDF). Retrieved 21 June 2022. https://data-apis.org/files/2021_annual_report_DataAPIs_Consortium.pdf
"Purpose and scope". Python array API standard 2021.12 documentation. Retrieved 21 June 2022. https://data-apis.org/array-api/latest/purpose_and_scope.html
"Install spaCy". spaCy Usage Documentation. Retrieved 21 June 2022. https://spacy.io/usage#gpu
Patel, Ankur A.; Arasanipalai, Ajay Uppili (May 2021). Applied Natural Language Processing in the Enterprise (1st ed.). O'Reilly Media, Inc. p. 68. ISBN 9781492062578. 9781492062578
"Python Package Introduction". xgboost 1.6.1 documentation. Retrieved 21 June 2022. https://xgboost.readthedocs.io/en/stable/python/python_intro.html#data-interface
"UCBerkeleySETI/turbo_seti: turboSETI -- python based SETI search algorithm". GitHub. Retrieved 21 June 2022. https://github.com/UCBerkeleySETI/turbo_seti#turbo_seti
"Open GPU Data Science | RAPIDS". Retrieved 21 June 2022. https://rapids.ai/
"API Docs". RAPIDS Docs. Retrieved 21 June 2022. https://docs.rapids.ai/api
"Efficient Data Sharing between CuPy and RAPIDS". Retrieved 21 June 2022. https://medium.com/rapids-ai/using-rapids-memory-manager-with-cupy-8d08fe8f58fa
"10 Minutes to cuDF and CuPy". Retrieved 21 June 2022. https://medium.com/rapids-ai/10-minutes-to-cudf-and-cupy-e131cac0439b
Alex, Rogozhnikov (2022). Einops: Clear and Reliable Tensor Manipulations with Einstein-like Notation. International Conference on Learning Representations. https://openreview.net/forum?id=oapKSVM2bcj
"arogozhnikov/einops: Deep learning operations reinvented (for pytorch, tensorflow, jax and others)". GitHub. Retrieved 21 June 2022. https://github.com/arogozhnikov/einops
"Array API support (experimental) — scikit-learn documentation". Retrieved 8 September 2024. https://scikit-learn.org/stable/modules/array_api.html
Tokui, Seiya; Okuta, Ryosuke; Akiba, Takuya; Niitani, Yusuke; Ogawa, Toru; Saito, Shunta; Suzuki, Shuji; Uenishi, Kota; Vogel, Brian; Vincent, Hiroyuki Yamazaki (2019). Chainer: A Deep Learning Framework for Accelerating the Research Cycle. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. doi:10.1145/3292500.3330756. https://dl.acm.org/doi/10.1145/3292500.3330756