The white noise probability measure μ {\displaystyle \mu } on the space S ′ ( R ) {\displaystyle S'(\mathbb {R} )} of tempered distributions has the characteristic function3
A version of Wiener's Brownian motion B ( t ) {\displaystyle B(t)} is obtained by the dual pairing
where 1 1 [ 0 , t ) {\displaystyle 1\!\!1_{[0,t)}} is the indicator function of the interval [ 0 , t ) {\displaystyle [0,t)} . Informally
and in a generalized sense
Fundamental to white noise analysis is the Hilbert space
generalizing the Hilbert spaces L 2 ( R n , e − 1 2 x 2 d n x ) {\displaystyle L^{2}(\mathbb {R} ^{n},e^{-{\frac {1}{2}}x^{2}}d^{n}x)} to infinite dimension.
An orthonormal basis in this Hilbert space, generalizing that of Hermite polynomials, is given by the so-called "Wick", or "normal ordered" polynomials ⟨ : ω n : , f n ⟩ {\displaystyle \left\langle {:\omega ^{n}:},f_{n}\right\rangle } with : ω n : ∈ S ′ ( R n ) {\displaystyle {:\omega ^{n}:}\in S'(\mathbb {R} ^{n})} and f n ∈ S ( R n ) {\displaystyle f_{n}\in S(\mathbb {R} ^{n})}
with normalization
entailing the Itô-Segal-Wiener isomorphism of the white noise Hilbert space ( L 2 ) {\displaystyle (L^{2})} with Fock space:
The "chaos expansion"
in terms of Wick polynomials correspond to the expansion in terms of multiple Wiener integrals. Brownian martingales M t ( ω ) {\displaystyle M_{t}(\omega )} are characterized by kernel functions f n {\displaystyle f_{n}} depending on t {\displaystyle t} only a "cut-off":
Suitable restrictions of the kernel function φ n {\displaystyle \varphi _{n}} to be smooth and rapidly decreasing in x {\displaystyle x} and n {\displaystyle n} give rise to spaces of white noise test functions φ {\displaystyle \varphi } , and, by duality, to spaces of generalized functions Ψ {\displaystyle \Psi } of white noise, with
generalizing the scalar product in ( L 2 ) {\displaystyle (L^{2})} . Examples are the Hida triple, with
or the more general Kondratiev triples.4
Using the white noise test functions
one introduces the "T-transform" of white noise distributions Ψ {\displaystyle \Psi } by setting
Likewise, using
one defines the "S-transform" of white noise distributions Ψ {\displaystyle \Psi } by
It is worth noting that for generalized functions Ψ {\displaystyle \Psi } , with kernels ψ n {\displaystyle \psi _{n}} as in , the S-transform is just
Depending on the choice of Gelfand triple, the white noise test functions and distributions are characterized by corresponding growth and analyticity properties of their S- or T-transforms.56
The function G ( f ) {\displaystyle G(f)} is the T-transform of a (unique) Hida distribution Ψ {\displaystyle \Psi } iff for all f 1 , f 2 ∈ S ( R ) , {\displaystyle f_{1},f_{2}\in S(R),} the function z ↦ G ( z f 1 + f 2 ) {\displaystyle z\mapsto G(zf_{1}+f_{2})} is analytic in the whole complex plane and of second order exponential growth, i.e. | G ( f ) | < a e b K ( f , f ) , {\displaystyle \left\vert G(\ f)\right\vert <ae^{bK(f,f)},} where K {\displaystyle K} is some continuous quadratic form on S ′ ( R ) × S ′ ( R ) {\displaystyle S'(\mathbb {R} )\times S'(\mathbb {R} )} .789
The same is true for S-transforms, and similar characterization theorems hold for the more general Kondratiev distributions.10
For test functions φ ∈ ( S ) {\displaystyle \varphi \in (S)} , partial, directional derivatives exist:
where ω {\displaystyle \omega } may be varied by any generalized function η {\displaystyle \eta } . In particular, for the Dirac distribution η = δ t {\displaystyle \eta =\delta _{t}} one defines the "Hida derivative", denoting
Gaussian integration by parts yields the dual operator on distribution space
An infinite-dimensional gradient
is given by
The Laplacian △ {\displaystyle \triangle } ("Laplace–Beltrami operator") with
plays an important role in infinite-dimensional analysis and is the image of the Fock space number operator.
A stochastic integral, the Hitsuda–Skorokhod integral, can be defined for suitable families Ψ ( t ) {\displaystyle \Psi (t)} of white noise distributions as a Pettis integral
generalizing the Itô integral beyond adapted integrands.
In general terms, there are two features of white noise analysis that have been prominent in applications.1112131415
First, white noise is a generalized stochastic process with independent values at each time.16 Hence it plays the role of a generalized system of independent coordinates, in the sense that in various contexts it has been fruitful to express more general processes occurring e.g. in engineering or mathematical finance, in terms of white noise.171819
Second, the characterization theorem given above allows various heuristic expressions to be identified as generalized functions of white noise. This is particularly effective to attribute a well-defined mathematical meaning to so-called "functional integrals". Feynman integrals in particular have been given rigorous meaning for large classes of quantum dynamical models.
Noncommutative extensions of the theory have grown under the name of quantum white noise, and finally, the rotational invariance of the white noise characteristic function provides a framework for representations of infinite-dimensional rotation groups.
Huang, Zhi-yuan; Yan, Jia-An (2000). Introduction to Infinite-Dimensional Stochastic Analysis. Dordrecht: Springer Netherlands. ISBN 9789401141086. OCLC 851373497. 9789401141086 ↩
Hida, Takeyuki (1976). "Analysis of Brownian functionals". Stochastic Systems: Modeling, Identification and Optimization, I. Mathematical Programming Studies. Vol. 5. Springer, Berlin, Heidelberg. pp. 53–59. doi:10.1007/bfb0120763. ISBN 978-3-642-00783-5. 978-3-642-00783-5 ↩
Hida, Takeyuki; Kuo, Hui-Hsiung; Potthoff, Jürgen; Streit, Ludwig (1993). White Noise. doi:10.1007/978-94-017-3680-0. ISBN 978-90-481-4260-6. 978-90-481-4260-6 ↩
Kondrat'ev, Yu.G.; Streit, L. (1993). "Spaces of White Noise distributions: constructions, descriptions, applications. I". Reports on Mathematical Physics. 33 (3): 341–366. Bibcode:1993RpMP...33..341K. doi:10.1016/0034-4877(93)90003-w. /wiki/Bibcode_(identifier) ↩
Kuo, H.-H.; Potthoff, J.; Streit, L. (1991). "A characterization of white noise test functionals". Nagoya Mathematical Journal. 121: 185–194. doi:10.1017/S0027763000003469. ISSN 0027-7630. https://projecteuclid.org/euclid.nmj/1118782788 ↩
Kondratiev, Yu.G.; Leukert, P.; Potthoff, J.; Streit, L.; Westerkamp, W. (1996). "Generalized Functionals in Gaussian Spaces: The Characterization Theorem Revisited". Journal of Functional Analysis. 141 (2): 301–318. arXiv:math/0303054. doi:10.1006/jfan.1996.0130. S2CID 58889052. /wiki/ArXiv_(identifier) ↩
Accardi, Luigi; Chen, Louis Hsiao Yun; Ohya, Masanori; Hida, Takeyuki; Si, Si (June 2017). Accardi, Luigi (ed.). White noise analysis and quantum information. Singapore: World Scientific Publishing. ISBN 9789813225459. OCLC 1007244903. 9789813225459 ↩
Bernido, Christopher C.; Carpio-Bernido, M. Victoria (2015). Methods and applications of white noise analysis in interdisciplinary sciences. New Jersey: World Scientific. ISBN 9789814569118. OCLC 884440293. 9789814569118 ↩
Holden, Helge; Øksendal, Bernt; Ubøe, Jan; Tusheng Zhang (2010). Stochastic partial differential equations : a modeling, white noise functional approach (2nd ed.). New York: Springer. ISBN 978-0-387-89488-1. OCLC 663094108. 978-0-387-89488-1 ↩
Hida, Takeyuki; Streit, Ludwig, eds. (2017). Let us use white noise. New Jersey: World Scientific. ISBN 9789813220935. OCLC 971020065. 9789813220935 ↩
Hida, Takeyuki, ed. (2005). Stochastic Analysis: Classical and Quantum. doi:10.1142/5962. ISBN 978-981-256-526-6. 978-981-256-526-6 ↩
Gelfand, Izrail Moiseevitch; Vilenkin, Naum Âkovlevič; Feinstein, Amiel (1964). Generalized functions. Vol. 4, Applications of harmonic analysis. New York: Academic Press. ISBN 978-0-12-279504-6. OCLC 490085153. {{cite book}}: ISBN / Date incompatibility (help) 978-0-12-279504-6 ↩
Biagini, Francesca; Øksendal, Bernt; Sulem, Agnès; Wallner, Naomi (2004-01-08). "An introduction to white–noise theory and Malliavin calculus for fractional Brownian motion". Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 460 (2041): 347–372. Bibcode:2004RSPSA.460..347B. doi:10.1098/rspa.2003.1246. hdl:10852/10633. ISSN 1364-5021. S2CID 120225816. /wiki/Francesca_Biagini ↩