Michio Jimbo considered the algebras with three generators related by the three commutators
When η → 0 {\displaystyle \eta \to 0} , these reduce to the commutators that define the special linear Lie algebra s l 2 {\displaystyle {\mathfrak {sl}}_{2}} . In contrast, for nonzero η {\displaystyle \eta } , the algebra defined by these relations is not a Lie algebra but instead an associative algebra that can be regarded as a deformation of the universal enveloping algebra of s l 2 {\displaystyle {\mathfrak {sl}}_{2}} .3
Kassel, Christian (1995), Quantum groups, Graduate Texts in Mathematics, vol. 155, Berlin, New York: Springer-Verlag, ISBN 978-0-387-94370-1, MR 1321145 978-0-387-94370-1 ↩
Tjin 1992, § 5. - Tjin, T. (10 October 1992). "An introduction to quantized Lie groups and algebras". International Journal of Modern Physics A. 07 (25): 6175–6213. arXiv:hep-th/9111043. Bibcode:1992IJMPA...7.6175T. doi:10.1142/S0217751X92002805. ISSN 0217-751X. S2CID 119087306. https://arxiv.org/abs/hep-th/9111043 ↩
Jimbo, Michio (1985), "A q {\displaystyle q} -difference analogue of U ( g ) {\displaystyle U({\mathfrak {g}})} and the Yang–Baxter equation", Letters in Mathematical Physics, 10 (1): 63–69, Bibcode:1985LMaPh..10...63J, doi:10.1007/BF00704588, S2CID 123313856 /wiki/Michio_Jimbo ↩