When wind encounters a porous obstacle, such as a windbreak or shelterbelt, air pressure increases on the windward side and decreases on the leeward side. As a result, the airstream approaching the barrier is interrupted, and a portion of it moves over the barrier, resulting in a jet of higher wind speed. The remainder of the airstream then moves through the barrier to its edge downstream, pushed along by the decrease in pressure across the shelterbelt's width; as it emerges again, that airstream is interrupted further as its air pressure adjusts to the surrounding area. This results in slower wind speed further downwind, reaching a minimum at a distance of about 3 to 5 times the windbreak's height. Beyond that point wind speed recovers, aided by the overlying, faster-moving stream. From the perspective of the Reynolds-averaged Navier–Stokes equations, these effects can be understood as resulting from the loss of momentum caused by the drag of leaves and branches and would be represented by the body force fi (a distributed momentum sink).8
Windbreaks reduce the wind's average air speed and make it less variable, resulting in the wind mixing less effectively than it does upwind. Additionally, all these changes to the wind's behavior result in changes to the region's environment. For instance, the surface energy budget of the ground may be impacted, as the slowed wind dissipates heat from the sun less effectively; this trend may reverse further downwind, and about 8 times the windbreak's height downstream, the windbreak may result in cooler surface temperatures.9
"Windbreaks". National Agroforestry Center. Retrieved 29 April 2015. https://www.fs.usda.gov/nac/practices/windbreaks.shtml ↩
"Role of trees in agriculture". Retrieved 13 February 2018. http://www.blue-berry.pl/index.php/blog/role-of-trees-in-agriculture ↩
Englund, Oskar; Börjesson, Pål; Mola-Yudego, Blas; Berndes, Göran; Dimitriou, Ioannis; Cederberg, Christel; Scarlat, Nicolae (2021). "Strategic deployment of riparian buffers and windbreaks in Europe can co-deliver biomass and environmental benefits". Communications Earth & Environment. 2 (1): 176. Bibcode:2021ComEE...2..176E. doi:10.1038/s43247-021-00247-y. S2CID 237310600. https://doi.org/10.1038%2Fs43247-021-00247-y ↩
Withgott, Jay; Scott Brennan (2008). Environment: The Science Behind the Stories (3rd ed.). San Francisco: Pearson Benjamin Cummings. p. 249. ISBN 978-0131357051. 978-0131357051 ↩
Hetlzer, Robert (1972). Soil Survey of Walsh County, North Dakota. United States NRCS Soil Conservation Service. p. 75. https://books.google.com/books?id=LUfYcK7fpBoC ↩
Matthews, John A. (2014), "WIND SHADOW", Encyclopedia of Environmental Change, SAGE Publications, Ltd., p. 1175, doi:10.4135/9781446247501, ISBN 9781446247112, retrieved 30 March 2020 9781446247112 ↩
Ucar, Tamer; Hall, Franklin R. (2001). "Windbreaks as a pesticide drift mitigation strategy: A review". Pest Management Science. 57 (8): 663–675. doi:10.1002/ps.341. /wiki/Doi_(identifier) ↩
Wilson, John D. (1985). "Numerical studies of flow through a windbreak". Journal of Wind Engineering and Industrial Aerodynamics. 21 (2): 119–154. doi:10.1016/0167-6105(85)90001-7. /wiki/Doi_(identifier) ↩
Argete, J.C; Wilson, J.D (1989). "The microclimate in the centre of small square sheltered plots". Agricultural and Forest Meteorology. 48 (1–2): 185–199. Bibcode:1989AgFM...48..185A. doi:10.1016/0168-1923(89)90016-6. /wiki/Bibcode_(identifier) ↩