One general form of cell engineering involves altering natural cell production to achieve a more desirable yield or shorter production time. A possible method for changing natural cell production includes boosting or repressing genes that are involved in the metabolism of the product. For example, researchers were able to overexpress transporter genes in hamster ovary cells to increase monoclonal antibody yield. Another approach could involve incorporating biologically foreign genes into an existing cell line. For example, E.Coli, which synthesizes ethanol, can be modified using genes from Zymomonas mobilis to make ethanol fermentation the primary cell fermentation product.
Within the focus of bioengineering, various cell modification methods are utilized to alter inherent properties of cells such as growth density, growth rate, growth yield, temperature resistance, freezing tolerance, chemical sensitivity, and vulnerability to pathogens. For example, in 1988 one group of researchers from the Illinois Institute of Technology successfully expressed a Vitreoscilla hemoglobin gene in E. Coli to create a strain that was more tolerant to low-oxygen conditions such as those found in high density industrial bioreactors.
One distinct section of cell engineering involves the alteration and tuning of stem cells. Much of the recent research on stem cell therapies and treatments falls under the aforementioned cell engineering methods. Stem cells are unique in that they may differentiate into various other types of cells which may then be altered to produce novel therapeutics or provide a foundation for further cell engineering efforts. One example of directed stem cell engineering includes partially differentiating stem cells into myocytes to enable production of pro-myogenic factors for the treatment of sarcopenia or muscle disuse atrophy.
The phrase "cell engineering" was first used in a published paper in 1968 to describe the process of improving fuel cells. The term was then adopted by other papers until the more specific "fuel-cell engineering" was used.
The first use of the term in a biological context was in 1971 in a paper which describes methods to graft reproductive caps between algae cells. Despite the rising popularity of the phrase, there remains unclear boundaries between cell engineering and other forms of biological engineering.
Cameron, Douglas C.; Tong, I-Teh (1993-01-01). "Cellular and metabolic engineering". Applied Biochemistry and Biotechnology. 38 (1): 105–140. doi:10.1007/BF02916416. ISSN 1559-0291. PMID 8346901. https://doi.org/10.1007/BF02916416
Nerem, Robert M. (1991-09-01). "Cellular engineering". Annals of Biomedical Engineering. 19 (5): 529–545. doi:10.1007/BF02367396. ISSN 1573-9686. PMID 1741530. https://doi.org/10.1007/BF02367396
"cell engineering - Search Results - PubMed". PubMed. Retrieved 2021-11-19. https://pubmed.ncbi.nlm.nih.gov/?term=cell+engineering
Cameron, Douglas C.; Tong, I-Teh (1993-01-01). "Cellular and metabolic engineering". Applied Biochemistry and Biotechnology. 38 (1): 105–140. doi:10.1007/BF02916416. ISSN 1559-0291. PMID 8346901. S2CID 28117582. https://doi.org/10.1007/BF02916416
Tabuchi, Hisahiro; Sugiyama, Tomoya; Tanaka, Saeko; Tainaka, Satoshi (2010). "Overexpression of taurine transporter in Chinese hamster ovary cells can enhance cell viability and product yield, while promoting glutamine consumption". Biotechnology and Bioengineering. 107 (6): 998–1003. doi:10.1002/bit.22880. ISSN 1097-0290. PMID 20661907. S2CID 9824980. https://onlinelibrary.wiley.com/doi/abs/10.1002/bit.22880
Ingram, L O; Conway, T; Clark, D P; Sewell, G W; Preston, J F (1987-10-01). "Genetic engineering of ethanol production in Escherichia coli". Applied and Environmental Microbiology. 53 (10): 2420–2425. Bibcode:1987ApEnM..53.2420I. doi:10.1128/aem.53.10.2420-2425.1987. PMC 204123. PMID 3322191. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC204123
Ledesma-Amaro, Rodrigo; Nicaud, Jean-Marc (October 2016). "Metabolic Engineering for Expanding the Substrate Range of Yarrowia lipolytica". Trends in Biotechnology. 34 (10): 798–809. doi:10.1016/j.tibtech.2016.04.010. ISSN 0167-7799. PMID 27207225. https://doi.org/10.1016/j.tibtech.2016.04.010
Prieto, M A; Perez-Aranda, A; Garcia, J L (1993-04-01). "Characterization of an Escherichia coli aromatic hydroxylase with a broad substrate range". Journal of Bacteriology. 175 (7): 2162–2167. doi:10.1128/jb.175.7.2162-2167.1993. PMC 204336. PMID 8458860. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC204336
Goeddel, D. V.; Kleid, D. G.; Bolivar, F.; Heyneker, H. L.; Yansura, D. G.; Crea, R.; Hirose, T.; Kraszewski, A.; Itakura, K.; Riggs, A. D. (1979-01-01). "Expression in Escherichia coli of chemically synthesized genes for human insulin". Proceedings of the National Academy of Sciences. 76 (1): 106–110. Bibcode:1979PNAS...76..106G. doi:10.1073/pnas.76.1.106. ISSN 0027-8424. PMC 382885. PMID 85300. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC382885
Goeddel, David V.; Heyneker, Herbert L.; Hozumi, Toyohara; Arentzen, Rene; Itakura, Keiichi; Yansura, Daniel G.; Ross, Michael J.; Miozzari, Giuseppe; Crea, Roberto; Seeburg, Peter H. (October 1979). "Direct expression in Escherichia coli of a DNA sequence coding for human growth hormone". Nature. 281 (5732): 544–548. Bibcode:1979Natur.281..544G. doi:10.1038/281544a0. ISSN 1476-4687. PMID 386136. S2CID 4237998. https://www.nature.com/articles/281544a0
Nascimento, I. P.; Leite, L. C. C. (December 2012). "Recombinant vaccines and the development of new vaccine strategies". Brazilian Journal of Medical and Biological Research. 45 (12): 1102–1111. doi:10.1590/S0100-879X2012007500142. ISSN 0100-879X. PMC 3854212. PMID 22948379. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3854212
Cameron, Douglas C.; Tong, I-Teh (1993-01-01). "Cellular and metabolic engineering". Applied Biochemistry and Biotechnology. 38 (1): 105–140. doi:10.1007/BF02916416. ISSN 1559-0291. PMID 8346901. S2CID 28117582. https://doi.org/10.1007/BF02916416
Dikshit, Kanak L.; Webster, Dale A. (1988-10-30). "Cloning, characterization and expression of the bacterial globin gene from Vitreoscilla in Escherichia coli". Gene. 70 (2): 377–386. doi:10.1016/0378-1119(88)90209-0. ISSN 0378-1119. PMID 2850971. https://dx.doi.org/10.1016/0378-1119%2888%2990209-0
Li, Shengwen Calvin; Wang, Lang; Jiang, Hong; Acevedo, Julyana; Chang, Anthony Christopher; Loudon, William Gunter (2009-03-01). "Stem cell engineering for treatment of heart diseases: Potentials and challenges". Cell Biology International. 33 (3): 255–267. doi:10.1016/j.cellbi.2008.11.009. ISSN 1065-6995. PMID 19084605. S2CID 20486657. https://doi.org/10.1016%2Fj.cellbi.2008.11.009
Fix, Dennis K.; Mahmassani, Ziad S.; Petrocelli, Jonathan J.; de Hart, Naomi M.M.P.; Ferrara, Patrick J.; Painter, Jessie S.; Nistor, Gabriel; Lane, Thomas E.; Keirstead, Hans S.; Drummond, Micah J. (2021-12-01). "Reversal of deficits in aged skeletal muscle during disuse and recovery in response to treatment with a secrotome product derived from partially differentiated human pluripotent stem cells". GeroScience. 43 (6): 2635–2652. doi:10.1007/s11357-021-00423-0. ISSN 2509-2723. PMC 8602548. PMID 34427856. https://doi.org/10.1007/s11357-021-00423-0
Thurber, W. C. (1968-05-01). "Closure to "Discussions of 'A Fuel Cell Power Plant for a Deep Diving Submarine'" (1968, ASME J. Eng. Ind., 90, pp. 266–267)". Journal of Engineering for Industry. 90 (2): 267. doi:10.1115/1.3604626. ISSN 0022-0817. https://doi.org/10.1115%2F1.3604626
Bonotto, S.; Kirchmann, R.; Manil, P. (1971-01-01). "Cell Engineering in Acetabularia: A Graft Method for Obtaining Large Cells with Two or More Reproductive Caps". Giornale Botanico Italiano. 105 (1): 1–9. doi:10.1080/11263507109431460. ISSN 0017-0070. https://doi.org/10.1080/11263507109431460
Cameron, Douglas C.; Tong, I-Teh (1993-01-01). "Cellular and metabolic engineering". Applied Biochemistry and Biotechnology. 38 (1): 105–140. doi:10.1007/BF02916416. ISSN 1559-0291. PMID 8346901. S2CID 28117582. https://doi.org/10.1007/BF02916416
Sadelain, Michel; Rivière, Isabelle; Riddell, Stanley (May 2017). "Therapeutic T cell engineering". Nature. 545 (7655): 423–431. Bibcode:2017Natur.545..423S. doi:10.1038/nature22395. ISSN 1476-4687. PMC 5632949. PMID 28541315. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5632949
Rita Costa, A.; Elisa Rodrigues, M.; Henriques, Mariana; Azeredo, Joana; Oliveira, Rosário (2010-02-01). "Guidelines to cell engineering for monoclonal antibody production". European Journal of Pharmaceutics and Biopharmaceutics. 74 (2): 127–138. doi:10.1016/j.ejpb.2009.10.002. hdl:1822/11473. ISSN 0939-6411. PMID 19853660. https://www.sciencedirect.com/science/article/pii/S0939641109003166
Mansouri, Maysam; Fussenegger, Martin (2021-09-29). "Therapeutic cell engineering: designing programmable synthetic genetic circuits in mammalian cells". Protein & Cell. 13 (7): 476–489. doi:10.1007/s13238-021-00876-1. ISSN 1674-8018. PMC 9226217. PMID 34586617. S2CID 238217661. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9226217
Clause, Kelly C.; Liu, Li J.; Tobita, Kimimasa (April 2010). "Directed Stem Cell Differentiation: The Role of Physical Forces". Cell Communication & Adhesion. 17 (2): 48–54. doi:10.3109/15419061.2010.492535. ISSN 1541-9061. PMC 3285265. PMID 20560867. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3285265
Pettinato, Mark C. (2021-10-27). "Introduction to Antibody-Drug Conjugates". Antibodies. 10 (4): 42. doi:10.3390/antib10040042. ISSN 2073-4468. PMC 8628511. PMID 34842621. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8628511