There are three generating functions for x ∈ { 0 , 1 , 2 , . . . , N } {\displaystyle x\in \{0,1,2,...,N\}}
When α = a + b − 1 , β = c + d − 1 , γ = a + d − 1 , δ = a − d , x → − a + i x , {\displaystyle \alpha =a+b-1,\beta =c+d-1,\gamma =a+d-1,\delta =a-d,x\rightarrow -a+ix,}
Askey & Wilson (1979) introduced the q-Racah polynomials defined in terms of basic hypergeometric functions by
They are sometimes given with changes of variables as
Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Wilson Class: Definitions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248. 978-0-521-19225-5 ↩
Koekoek, Roelof; Swarttouw, René F. (1998), The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue https://fa.ewi.tudelft.nl/~koekoek/askey/ch1/par2/par2.html ↩