Menu
Home
People
Places
Arts
History
Plants & Animals
Science
Life & Culture
Technology
Reference.org
Normal order of an arithmetic function
open-in-new
Examples
The
Hardy–Ramanujan theorem
: the normal order of ω(
n
), the number of distinct
prime factors
of
n
, is log(log(
n
));
The normal order of Ω(
n
), the number of prime factors of
n
counted with
multiplicity
, is log(log(
n
));
The normal order of log(
d
(
n
)), where
d
(
n
) is the number of divisors of
n
, is log(2) log(log(
n
)).
See also
Average order of an arithmetic function
Divisor function
Extremal orders of an arithmetic function
Turán–Kubilius inequality
Hardy, G.H.
;
Ramanujan, S.
(1917).
"The normal number of prime factors of a number
n
"
.
Quart. J. Math
. 48: 76–92.
JFM
46.0262.03
.
Hardy, G. H.
;
Wright, E. M.
(2008) [1938].
An Introduction to the Theory of Numbers
. Revised by
D. R. Heath-Brown
and
J. H. Silverman
. Foreword by
Andrew Wiles
. (6th ed.). Oxford:
Oxford University Press
.
ISBN
978-0-19-921986-5.
MR
2445243
.
Zbl
1159.11001
.. p. 473
Sándor, Jozsef; Crstici, Borislav (2004),
Handbook of number theory II
, Dordrecht: Kluwer Academic, p. 332,
ISBN
1-4020-2546-7,
Zbl
1079.11001
Tenenbaum, Gérald (1995).
Introduction to Analytic and Probabilistic Number Theory
. Cambridge studies in advanced mathematics. Vol. 46. Translated from the 2nd French edition by C.B.Thomas.
Cambridge University Press
. pp. 299–324.
ISBN
0-521-41261-7.
Zbl
0831.11001
.
External links
Weisstein, Eric W.
"Normal Order"
.
MathWorld
.