In addition to the conventional temperature scan DLTS, in which the temperature is swept while pulsing the device at a constant frequency, the temperature can be kept constant and sweep the pulsing frequency. This technique is called the frequency scan DLTS. In theory the frequency and temperature scan DLTS should yield same results. Frequency scan DLTS is specifically useful when an aggressive change in temperature might damage the device. An example when frequency scan is shown to be useful is for studying modern MOS devices with thin and sensitive gate oxides.
In general, the analysis of the capacitance transients in the DLTS measurements assumes that the concentration of investigated traps is much smaller than the material doping concentration. In cases when this assumption is not fulfilled then the constant capacitance DLTS (CCDLTS) method is used for more accurate determination of the trap concentration. When the defects recharge and their concentration is high then the width of the device space region varies making the analysis of the capacitance transient inaccurate. The additional electronic circuitry maintaining the total device capacitance constant by varying the device bias voltage helps to keep the depletion region width constant. As a result, the varying device voltage reflects the defect recharge process. An analysis of the CCDLTS system using feedback theory was provided by Lau and Lam in 1982.
There is an important shortcoming for DLTS: it cannot be used for insulating materials. (Note: an insulator can be considered as a very large bandgap semiconductor.) For insulating materials it is difficult or impossible to produce a device having a space region for which width could be changed by the external voltage bias and thus the capacitance measurement-based DLTS methods cannot be applied for the defect analysis. Basing on experiences of the thermally stimulated current (TSC) spectroscopy, the current transients are analyzed with the DLTS methods (I-DLTS), where the light pulses are used for the defect occupancy disturbance. This method in the literature is sometimes called the Photoinduced Transient Spectroscopy (PITS). I-DLTS or PITS are also used for studying defects in the i-region of a p-i-n diode.
Lang, D. V. (1974). "Deep-level transient spectroscopy: A new method to characterize traps in semiconductors". Journal of Applied Physics. 45 (7). AIP Publishing: 3023–3032. Bibcode:1974JAP....45.3023L. doi:10.1063/1.1663719. ISSN 0021-8979. /wiki/Bibcode_(identifier)
[1], "Method for measuring traps in semiconductors", issued 1973-12-06
https://patents.google.com/patent/US3859595A/en
Elhami Khorasani, Arash; Schroder, Dieter K.; Alford, T. L. (2014). "A Fast Technique to Screen Carrier Generation Lifetime Using DLTS on MOS Capacitors". IEEE Transactions on Electron Devices. 61 (9). Institute of Electrical and Electronics Engineers (IEEE): 3282–3288. Bibcode:2014ITED...61.3282E. doi:10.1109/ted.2014.2337898. ISSN 0018-9383. S2CID 5895479. /wiki/Bibcode_(identifier)
Fourches, N. (28 January 1991). "Deep level transient spectroscopy based on conductance transients". Applied Physics Letters. 58 (4). AIP Publishing: 364–366. Bibcode:1991ApPhL..58..364F. doi:10.1063/1.104635. ISSN 0003-6951. /wiki/Bibcode_(identifier)
Elhami Khorasani, Arash; Schroder, Dieter K.; Alford, T. L. (2014). "A Fast Technique to Screen Carrier Generation Lifetime Using DLTS on MOS Capacitors". IEEE Transactions on Electron Devices. 61 (9). Institute of Electrical and Electronics Engineers (IEEE): 3282–3288. Bibcode:2014ITED...61.3282E. doi:10.1109/ted.2014.2337898. ISSN 0018-9383. S2CID 5895479. /wiki/Bibcode_(identifier)
Elhami Khorasani, Arash; Schroder, Dieter K.; Alford, T. L. (2014). "A Fast Technique to Screen Carrier Generation Lifetime Using DLTS on MOS Capacitors". IEEE Transactions on Electron Devices. 61 (9). Institute of Electrical and Electronics Engineers (IEEE): 3282–3288. Bibcode:2014ITED...61.3282E. doi:10.1109/ted.2014.2337898. ISSN 0018-9383. S2CID 5895479. /wiki/Bibcode_(identifier)
Lin, S. W.; Balocco, C.; Missous, M.; Peaker, A. R.; Song, A. M. (3 October 2005). "Coexistence of deep levels with optically active InAs quantum dots". Physical Review B. 72 (16). American Physical Society (APS): 165302. Bibcode:2005PhRvB..72p5302L. doi:10.1103/physrevb.72.165302. ISSN 1098-0121. /wiki/Bibcode_(identifier)
Antonova, Irina V.; Volodin, Vladimir A.; Neustroev, Efim P.; Smagulova, Svetlana A.; Jedrzejewsi, Jedrzej; Balberg, Isaac (15 September 2009). "Charge spectroscopy of Si nanocrystallites embedded in a SiO2 matrix". Journal of Applied Physics. 106 (6). AIP Publishing: 064306–064306–6. Bibcode:2009JAP...106f4306A. doi:10.1063/1.3224865. ISSN 0021-8979. /wiki/Bibcode_(identifier)
Buljan, M.; Grenzer, J.; Holý, V.; Radić, N.; Mišić-Radić, T.; Levichev, S.; Bernstorff, S.; Pivac, B.; Capan, I. (18 October 2010). "Structural and charge trapping properties of two bilayer (Ge+SiO2)/SiO2 films deposited on rippled substrate". Applied Physics Letters. 97 (16). AIP Publishing: 163117. Bibcode:2010ApPhL..97p3117B. doi:10.1063/1.3504249. ISSN 0003-6951. /wiki/Bibcode_(identifier)
Nazeeruddin, Mohammad Khaja; Ahn, Tae Kyu; Shin, Jai Kwang; Kim, Yong Su; Yun, Dong-Jin; Kim, Kihong; Park, Jong-Bong; Lee, Jooho; Seol, Minsu (2017-05-17). "Deep level trapped defect analysis in CH3NH3PbI3 perovskite solar cells by deep level transient spectroscopy". Energy & Environmental Science. 10 (5): 1128–1133. Bibcode:2017EnEnS..10.1128H. doi:10.1039/C7EE00303J. ISSN 1754-5706. /wiki/Bibcode_(identifier)
Heo, Sung; Seo, Gabseok; Lee, Yonghui; Seol, Minsu; Kim, Seong Heon; Yun, Dong-Jin; Kim, Yongsu; Kim, Kihong; Lee, Junho (2019). "Origins of High Performance and Degradation in the Mixed Perovskite Solar Cells". Advanced Materials. 31 (8): 1805438. Bibcode:2019AdM....3105438H. doi:10.1002/adma.201805438. ISSN 1521-4095. PMID 30614565. S2CID 58578989. /wiki/Bibcode_(identifier)
Brunwin, R.; Hamilton, B.; Jordan, P.; Peaker, A.R. (1979). "Detection of minority-carrier traps using transient spectroscopy". Electronics Letters. 15 (12). Institution of Engineering and Technology (IET): 349. Bibcode:1979ElL....15..349B. doi:10.1049/el:19790248. ISSN 0013-5194. /wiki/Bibcode_(identifier)
Hamilton, B.; Peaker, A. R.; Wight, D. R. (1979). "Deep-state-controlled minority-carrier lifetime inn-type gallium phosphide". Journal of Applied Physics. 50 (10). AIP Publishing: 6373–6385. Bibcode:1979JAP....50.6373H. doi:10.1063/1.325728. ISSN 0021-8979. /wiki/Bibcode_(identifier)
Markevich, V. P.; Hawkins, I. D.; Peaker, A. R.; Emtsev, K. V.; Emtsev, V. V.; Litvinov, V. V.; Murin, L. I.; Dobaczewski, L. (27 December 2004). "Vacancy–group-V-impurity atom pairs in Ge crystals doped with P, As, Sb, and Bi". Physical Review B. 70 (23). American Physical Society (APS): 235213. Bibcode:2004PhRvB..70w5213M. doi:10.1103/physrevb.70.235213. ISSN 1098-0121. /wiki/Bibcode_(identifier)
Dobaczewski, L.; Peaker, A. R.; Bonde Nielsen, K. (2004). "Laplace-transform deep-level spectroscopy: The technique and its applications to the study of point defects in semiconductors". Journal of Applied Physics. 96 (9). AIP Publishing: 4689–4728. Bibcode:2004JAP....96.4689D. doi:10.1063/1.1794897. ISSN 0021-8979. /wiki/Bibcode_(identifier)
Laplace transform Deep Level Transient Spectroscopy http://www.laplacedlts.eu
Point Group Symmetry http://www.staff.ncl.ac.uk/j.p.goss/symmetry/index.html
Dobaczewski, L.; Peaker, A. R.; Bonde Nielsen, K. (2004). "Laplace-transform deep-level spectroscopy: The technique and its applications to the study of point defects in semiconductors". Journal of Applied Physics. 96 (9). AIP Publishing: 4689–4728. Bibcode:2004JAP....96.4689D. doi:10.1063/1.1794897. ISSN 0021-8979. /wiki/Bibcode_(identifier)
Dobaczewski, L.; Bernardini, S.; Kruszewski, P.; Hurley, P. K.; Markevich, V. P.; Hawkins, I. D.; Peaker, A. R. (16 June 2008). "Energy state distributions of the Pb centers at the (100), (110), and (111) Si/SiO2 interfaces investigated by Laplace deep level transient spectroscopy" (PDF). Applied Physics Letters. 92 (24). AIP Publishing: 242104. Bibcode:2008ApPhL..92x2104D. doi:10.1063/1.2939001. ISSN 0003-6951. https://hal.archives-ouvertes.fr/hal-01633139/file/Dobaczewski%20et%20al.%20-%202008%20-%20Energy%20state%20distributions%20of%20the%20P%20b%20centers%20at%20t.pdf
Johnson, N. M.; Bartelink, D. J.; Gold, R. B.; Gibbons, J. F. (1979). "Constant-capacitance DLTS measurement of defect-density profiles in semiconductors". Journal of Applied Physics. 50 (7). AIP Publishing: 4828–4833. Bibcode:1979JAP....50.4828J. doi:10.1063/1.326546. ISSN 0021-8979. https://doi.org/10.1063%2F1.326546
Lau, W. S.; Lam, Y. W. (1982). "Analysis of and some design considerations for the constant capacitance DLTS system". International Journal of Electronics. 52 (4). Informa UK Limited: 369–379. doi:10.1080/00207218208901442. ISSN 0020-7217. /wiki/Doi_(identifier)
Hurtes, Ch.; Boulou, M.; Mitonneau, A.; Bois, D. (15 June 1978). "Deep-level spectroscopy in high-resistivity materials". Applied Physics Letters. 32 (12). AIP Publishing: 821–823. Bibcode:1978ApPhL..32..821H. doi:10.1063/1.89929. ISSN 0003-6951. /wiki/Bibcode_(identifier)