Unlike deterministic finite automata, minimal NFAs may not be unique. There may be multiple NFAs of the same size which accept the same regular language, but for which there is no equivalent NFA or DFA with fewer states.
Jiang, Tao; Ravikumar, B. (1993), "Minimal NFA Problems are Hard", SIAM Journal on Computing, 22 (6): 1117–1141, doi:10.1137/0222067 https://doi.org/10.1137/0222067 ↩
Kameda, Tsunehiko; Weiner, Peter (August 1970). "On the State Minimization of Nondeterministic Finite Automata". IEEE Transactions on Computers. C-19 (7). IEEE: 617–627. doi:10.1109/T-C.1970.222994. S2CID 31188224. Retrieved 2020-05-03. https://www.researchgate.net/publication/3045459 ↩