To eliminate the probability of the simultaneous emission of two photons it has to be made sure that there can only be one exciton in the cavity at one time. The discrete energy states in a quantum dot allow only one excitation. Additionally, the Rydberg blockade prevents the excitation of two excitons at the same space... The electromagnetic interaction with the already existing exciton changes the energy for creating another exciton at the same space slightly. If the energy of the pump laser is tuned on resonance, the second exciton cannot be created.
Still, there is a small probability of having two excitations in the quantum dot at the same time. Two excitons confined in a small volume are called biexcitons. They interact with each other and thus slightly change their energy. Photons resulting from the decay of biexcitons have a different energy than photons resulting from the decay of excitons. They can be filtered out by letting the outgoing beam pass an optical filter.
The quantum dots can be excited both electrically and optically. For optical pumping, a pulsed laser can be used for excitation of the quantum dots. In order to have the highest probability of creating an exciton, the pump laser is tuned on resonance. This resembles a
π
{\displaystyle \pi }
-pulse on the Bloch sphere. However, this way the emitted photons have the same frequency as the pump laser. A polarizer is needed to distinguish between them. As the direction of polarization of the photons from the cavity is random, half of the emitted photons are blocked by this filter.
There are several ways to realize a quantum dot-cavity system that can act as a single-photon source. Typical cavity structures are micro-pillars, photonic crystal cavities, or tunable micro-cavities. Inside the cavity, different types of quantum dots can be used. The most widely used type are self-assembled InAs quantum dots grown in the Stranski-Krastanov growth mode, but other materials and growth methods such as local droplet etching have been used. A list of different experimental realizations is shown below:
Single-photon sources are of great importance in quantum communication science. They can be used for truly random number generators. Single photons entering a beam splitter exhibit inherent quantum indeterminacy. Random numbers are used extensively in simulations using the Monte Carlo method.
Apart from that, single photon sources can be used to test some fundamental properties of quantum field theory.
Grangier, Philippe; Roger, Gerard; Aspect, Alain (1986). "Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences". EPL (Europhysics Letters). 1 (4): 173. Bibcode:1986EL......1..173G. CiteSeerX 10.1.1.178.4356. doi:10.1209/0295-5075/1/4/004. S2CID 250837011. /wiki/Bibcode_(identifier)
Michler, P.; Kiraz, A.; Becher, C.; Schoenfeld, W.V.; Petroff, P.M.; Zhang, Lidong; Hu, E.; Imamoglu, A. (2000). "A Quantum Dot Single-Photon Turnstile Device". Science. 290 (5500): 2282–2285. Bibcode:2000Sci...290.2282M. doi:10.1126/science.290.5500.2282. PMID 11125136. /wiki/Bibcode_(identifier)
Kress, A.; Hofbauer, F.; Reinelt, N.; Kaniber, M.; Krenner, H.J.; Meyer, R.; Böhm, G.; Finley, J.J. (2005). "Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals". Phys. Rev. B. 71 (24): 241304. arXiv:quant-ph/0501013. Bibcode:2005PhRvB..71x1304K. doi:10.1103/PhysRevB.71.241304. S2CID 119442776. /wiki/ArXiv_(identifier)
Moreau, E.; Robert, I.; Gérard, J.M.; Abram, I.; Manin, L.; Thierry-Mieg, V. (2001). "Single-mode solid-state single-photon source based on isolated quantum dots in pillar microcavities". Appl. Phys. Lett. 79 (18): 2865–2867. Bibcode:2001ApPhL..79.2865M. doi:10.1063/1.1415346. /wiki/Bibcode_(identifier)
Eisaman, M. D.; Fan, J.; Migdall, A.; Polyakov, S. V. (2011-07-01). "Invited Review Article: Single-photon sources and detectors". Review of Scientific Instruments. 82 (7): 071101–071101–25. Bibcode:2011RScI...82g1101E. doi:10.1063/1.3610677. ISSN 0034-6748. PMID 21806165. https://doi.org/10.1063%2F1.3610677
Eisaman, M. D.; Fan, J.; Migdall, A.; Polyakov, S. V. (2011-07-01). "Invited Review Article: Single-photon sources and detectors". Review of Scientific Instruments. 82 (7): 071101–071101–25. Bibcode:2011RScI...82g1101E. doi:10.1063/1.3610677. ISSN 0034-6748. PMID 21806165. https://doi.org/10.1063%2F1.3610677
Senellart, P.; Solomon, G.; White, A. (2017). "High-performance semiconductor quantum-dot single-photon sources". Nature Nanotechnology. 12 (11): 1026–1039. Bibcode:2017NatNa..12.1026S. doi:10.1038/nnano.2017.218. PMID 29109549. /wiki/Bibcode_(identifier)
Birowosuto, M. D.; Sumikura, H.; Matsuo, S.; Taniyama, H.; Veldhoven, P.J.; Notzel, R.; Notomi, M. (2012). "Fast Purcell-enhanced single-photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling". Sci. Rep. 2: 321. arXiv:1203.6171. Bibcode:2012NatSR...2..321B. doi:10.1038/srep00321. PMC 3307054. PMID 22432053. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3307054
T. Kazimierczuk; D. Fröhlich; S. Scheel; H. Stolz & M. Bayer (2014). "Giant Rydberg excitons in the copper oxide Cu2O". Nature. 514 (7522): 343–347. arXiv:1407.0691. Bibcode:2014Natur.514..343K. doi:10.1038/nature13832. PMID 25318523. S2CID 4470179. /wiki/ArXiv_(identifier)
Gold, Peter (2015). "Quantenpunkt-Mikroresonatoren als Bausteine für die Quantenkommunikation". {{cite journal}}: Cite journal requires |journal= (help) /wiki/Template:Cite_journal
Eisaman, M. D.; Fan, J.; Migdall, A.; Polyakov, S. V. (2011-07-01). "Invited Review Article: Single-photon sources and detectors". Review of Scientific Instruments. 82 (7): 071101–071101–25. Bibcode:2011RScI...82g1101E. doi:10.1063/1.3610677. ISSN 0034-6748. PMID 21806165. https://doi.org/10.1063%2F1.3610677
Ding, Xing; He, Yu; Duan, Z-C; Gregersen, Niels; Chen, M-C; Unsleber, S; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei (2016). "On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar". Physical Review Letters. 116 (2): 020401. arXiv:1507.04937. Bibcode:2016PhRvL.116a0401P. doi:10.1103/PhysRevLett.116.010401. PMID 26799002. S2CID 206266974. /wiki/ArXiv_(identifier)
Ding, Xing; He, Yu; Duan, Z-C; Gregersen, Niels; Chen, M-C; Unsleber, S; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei (2016). "On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar". Physical Review Letters. 116 (2): 020401. arXiv:1507.04937. Bibcode:2016PhRvL.116a0401P. doi:10.1103/PhysRevLett.116.010401. PMID 26799002. S2CID 206266974. /wiki/ArXiv_(identifier)
Gurioli, Massimo; Wang, Zhiming; Rastelli, Armando; Kuroda, Takashi; Sanguinetti, Stefano (2019). "Droplet epitaxy of semiconductor nanostructures for quantum photonic devices". Nature Materials. 18 (8): 799–810. arXiv:2103.15083. Bibcode:2019NatMa..18..799G. doi:10.1038/s41563-019-0355-y. ISSN 1476-1122. PMID 31086322. S2CID 155091956. /wiki/ArXiv_(identifier)
Zhai, Liang; Löbl, Matthias C.; Nguyen, Giang N.; Ritzmann, Julian; Javadi, Alisa; Spinnler, Clemens; Wieck, Andreas D.; Ludwig, Arne; Warburton, Richard J. (2020). "Low-noise GaAs quantum dots for quantum photonics". Nature Communications. 11 (1): 4745. arXiv:2003.00023. Bibcode:2020NatCo..11.4745Z. doi:10.1038/s41467-020-18625-z. ISSN 2041-1723. PMC 7506537. PMID 32958795. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506537
Ding, Xing; He, Yu; Duan, Z-C; Gregersen, Niels; Chen, M-C; Unsleber, S; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei (2016). "On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar". Physical Review Letters. 116 (2): 020401. arXiv:1507.04937. Bibcode:2016PhRvL.116a0401P. doi:10.1103/PhysRevLett.116.010401. PMID 26799002. S2CID 206266974. /wiki/ArXiv_(identifier)
Somaschi, Niccolo; Giesz, Valérian; De Santis, Lorenzo; Loredo, JC; Almeida, Marcelo P; Hornecker, Gaston; Portalupi, Simone Luca; Grange, Thomas; Anton, Carlos; Demory, Justin (2016). "Near-optimal single-photon sources in the solid state". Nature Photonics. 10 (5): 340–345. arXiv:1510.06499. Bibcode:2016NaPho..10..340S. doi:10.1038/nphoton.2016.23. S2CID 119281960. /wiki/ArXiv_(identifier)
Herve, P.; Vandamme, L. K. J. (1994). "General relation between refractive index and energy gap in semiconductors". Infrared Physics & Technology. 35 (4): 609–615. Bibcode:1994InPhT..35..609H. doi:10.1016/1350-4495(94)90026-4. /wiki/Bibcode_(identifier)
Reitzenstein, S. & Forchel, A. (2010). "Quantum dot micropillars". Journal of Physics D: Applied Physics. 43 (3): 033001. doi:10.1088/0022-3727/43/3/033001. S2CID 122998636. /wiki/Doi_(identifier)
Gold, Peter (2015). "Quantenpunkt-Mikroresonatoren als Bausteine für die Quantenkommunikation". {{cite journal}}: Cite journal requires |journal= (help) /wiki/Template:Cite_journal
Tomm, Natasha; Javadi, Alisa; Antoniadis, Nadia Olympia; Najer, Daniel; Löbl, Matthias Christian; Korsch, Alexander Rolf; Schott, Rüdiger; Valentin, Sascha René; Wieck, Andreas Dirk; Ludwig, Arne; Warburton, Richard John (2021). "A bright and fast source of coherent single photons". Nature Nanotechnology. 16 (4): 399–403. arXiv:2007.12654. Bibcode:2021NatNa..16..399T. doi:10.1038/s41565-020-00831-x. ISSN 1748-3387. PMID 33510454. S2CID 220769410. /wiki/ArXiv_(identifier)
Ding, Xing; Guo, Yong-Peng; Xu, Mo-Chi; Liu, Run-Ze; Zou, Geng-Yan; Zhao, Jun-Yi; Ge, Zhen-Xuan; Zhang, Qi-Hang; Liu, Hua-Liang; Wang, Lin-Jun; Chen, Ming-Cheng; Wang, Hui; He, Yu-Ming; Huo, Yong-Heng; Lu, Chao-Yang; Pan, Jian-Wei (2023). "High-efficiency single-photon source above the loss-tolerant threshold for efficient linear optical quantum computing". arXiv:2311.08347 [quant-ph]. /wiki/ArXiv_(identifier)
Najer, Daniel; Söllner, Immo; Sekatski, Pavel; Dolique, Vincent; Löbl, Matthias C.; Riedel, Daniel; Schott, Rüdiger; Starosielec, Sebastian; Valentin, Sascha R.; Wieck, Andreas D.; Sangouard, Nicolas; Ludwig, Arne; Warburton, Richard J. (2019). "A gated quantum dot strongly coupled to an optical microcavity". Nature. 575 (7784): 622–627. arXiv:1812.08662. Bibcode:2019Natur.575..622N. doi:10.1038/s41586-019-1709-y. ISSN 0028-0836. PMID 31634901. S2CID 204832937. /wiki/ArXiv_(identifier)
Fischbach, Sarah; Schlehahn, Alexander; Thoma, Alexander; Srocka, Nicole; Gissibl, Timo; Ristok, Simon; Thiele, Simon; Kaganskiy, Arsenty; Strittmatter, André; Heindel, Tobias; Rodt, Sven; Herkommer, Alois; Giessen, Harald; Reitzenstein, Stephan (2017). "Single Quantum Dot with Microlens and 3D-Printed Micro-objective as Integrated Bright Single-Photon Source". ACS Photonics. 4 (6): 1327–1332. doi:10.1021/acsphotonics.7b00253. ISSN 2330-4022. PMC 5485799. PMID 28670600. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5485799
Schöll, Eva; Hanschke, Lukas; Schweickert, Lucas; Zeuner, Katharina D.; Reindl, Marcus; Covre da Silva, Saimon Filipe; Lettner, Thomas; Trotta, Rinaldo; Finley, Jonathan J.; Müller, Kai; Rastelli, Armando; Zwiller, Val; Jöns, Klaus D. (2019). "Resonance Fluorescence of GaAs Quantum Dots with Near-Unity Photon Indistinguishability". Nano Letters. 19 (4): 2404–2410. arXiv:1901.09721. Bibcode:2019NanoL..19.2404S. doi:10.1021/acs.nanolett.8b05132. ISSN 1530-6984. PMC 6463245. PMID 30862165. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6463245
Liu, Feng; Brash, Alistair J.; O’Hara, John; Martins, Luis M. P. P.; Phillips, Catherine L.; Coles, Rikki J.; Royall, Benjamin; Clarke, Edmund; Bentham, Christopher; Prtljaga, Nikola; Itskevich, Igor E.; Wilson, Luke R.; Skolnick, Maurice S.; Fox, A. Mark (2018). "High Purcell factor generation of indistinguishable on-chip single photons". Nature Nanotechnology. 13 (9): 835–840. arXiv:1706.04422. Bibcode:2018NatNa..13..835L. doi:10.1038/s41565-018-0188-x. ISSN 1748-3387. PMID 30013218. S2CID 205568107. /wiki/ArXiv_(identifier)
Uppu, Ravitej; Pedersen, Freja T.; Wang, Ying; Olesen, Cecilie T.; Papon, Camille; Zhou, Xiaoyan; Midolo, Leonardo; Scholz, Sven; Wieck, Andreas D.; Ludwig, Arne; Lodahl, Peter (2020). "Scalable integrated single-photon source". Science Advances. 6 (50): eabc8268. arXiv:2003.08919. Bibcode:2020SciA....6.8268U. doi:10.1126/sciadv.abc8268. ISSN 2375-2548. PMC 7725451. PMID 33298444. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7725451
Rengstl, U.; Schwartz, M.; Herzog, T.; Hargart, F.; Paul, M.; Portalupi, S. L.; Jetter, M.; Michler, P. (2015). "On-chip beamsplitter operation on single photons from quasi-resonantly excited quantum dots embedded in GaAs rib waveguides". Applied Physics Letters. 107 (2): 021101. Bibcode:2015ApPhL.107b1101R. doi:10.1063/1.4926729. ISSN 0003-6951. https://doi.org/10.1063%2F1.4926729
Papon, Camille; Zhou, Xiaoyan; Thyrrestrup, Henri; Liu, Zhe; Stobbe, Søren; Schott, Rüdiger; Wieck, Andreas D.; Ludwig, Arne; Lodahl, Peter; Midolo, Leonardo (2019). "Nanomechanical single-photon routing". Optica. 6 (4): 524. arXiv:1811.10962. Bibcode:2019Optic...6..524P. doi:10.1364/OPTICA.6.000524. ISSN 2334-2536. S2CID 117682842. /wiki/ArXiv_(identifier)
Paul, H (1982). "Photon antibunching". Reviews of Modern Physics. 54 (4): 1061–1102. Bibcode:1982RvMP...54.1061P. doi:10.1103/RevModPhys.54.1061. /wiki/Bibcode_(identifier)
Ding, Xing; He, Yu; Duan, Z-C; Gregersen, Niels; Chen, M-C; Unsleber, S; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei (2016). "On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar". Physical Review Letters. 116 (2): 020401. arXiv:1507.04937. Bibcode:2016PhRvL.116a0401P. doi:10.1103/PhysRevLett.116.010401. PMID 26799002. S2CID 206266974. /wiki/ArXiv_(identifier)
Somaschi, Niccolo; Giesz, Valérian; De Santis, Lorenzo; Loredo, JC; Almeida, Marcelo P; Hornecker, Gaston; Portalupi, Simone Luca; Grange, Thomas; Anton, Carlos; Demory, Justin (2016). "Near-optimal single-photon sources in the solid state". Nature Photonics. 10 (5): 340–345. arXiv:1510.06499. Bibcode:2016NaPho..10..340S. doi:10.1038/nphoton.2016.23. S2CID 119281960. /wiki/ArXiv_(identifier)
Schweickert, Lucas; Jöns, Klaus D.; Zeuner, Katharina D.; Covre da Silva, Saimon Filipe; Huang, Huiying; Lettner, Thomas; Reindl, Marcus; Zichi, Julien; Trotta, Rinaldo; Rastelli, Armando; Zwiller, Val (2018). "On-demand generation of background-free single photons from a solid-state source". Applied Physics Letters. 112 (9): 093106. arXiv:1712.06937. Bibcode:2018ApPhL.112i3106S. doi:10.1063/1.5020038. ISSN 0003-6951. S2CID 21749500. /wiki/ArXiv_(identifier)
C. K. Hong; Z. Y. Ou & L. Mandel (1987). "Measurement of subpicosecond time intervals between two photons by interference". Phys. Rev. Lett. 59 (18): 2044–2046. Bibcode:1987PhRvL..59.2044H. doi:10.1103/PhysRevLett.59.2044. PMID 10035403. /wiki/Bibcode_(identifier)
Somaschi, Niccolo; Giesz, Valérian; De Santis, Lorenzo; Loredo, JC; Almeida, Marcelo P; Hornecker, Gaston; Portalupi, Simone Luca; Grange, Thomas; Anton, Carlos; Demory, Justin (2016). "Near-optimal single-photon sources in the solid state". Nature Photonics. 10 (5): 340–345. arXiv:1510.06499. Bibcode:2016NaPho..10..340S. doi:10.1038/nphoton.2016.23. S2CID 119281960. /wiki/ArXiv_(identifier)
Ding, Xing; He, Yu; Duan, Z-C; Gregersen, Niels; Chen, M-C; Unsleber, S; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei (2016). "On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar". Physical Review Letters. 116 (2): 020401. arXiv:1507.04937. Bibcode:2016PhRvL.116a0401P. doi:10.1103/PhysRevLett.116.010401. PMID 26799002. S2CID 206266974. /wiki/ArXiv_(identifier)
Eisaman, M. D.; Fan, J.; Migdall, A.; Polyakov, S. V. (2011-07-01). "Invited Review Article: Single-photon sources and detectors". Review of Scientific Instruments. 82 (7): 071101–071101–25. Bibcode:2011RScI...82g1101E. doi:10.1063/1.3610677. ISSN 0034-6748. PMID 21806165. https://doi.org/10.1063%2F1.3610677
C. H. Bennett and G. Brassard. "Quantum cryptography: Public key distribution and coin tossing". In Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, volume 175, page 8. New York, 1984. http://researcher.watson.ibm.com/researcher/files/us-bennetc/BB84highest.pdf Archived 2020-01-30 at the Wayback Machine http://researcher.watson.ibm.com/researcher/files/us-bennetc/BB84highest.pdf
Wootters, William; Zurek, Wojciech (1982). "A Single Quantum Cannot be Cloned". Nature. 299 (5886): 802–803. Bibcode:1982Natur.299..802W. doi:10.1038/299802a0. S2CID 4339227. /wiki/Nature_(journal)
Grangier, Philippe; Roger, Gerard; Aspect, Alain (1986). "Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences". EPL (Europhysics Letters). 1 (4): 173. Bibcode:1986EL......1..173G. CiteSeerX 10.1.1.178.4356. doi:10.1209/0295-5075/1/4/004. S2CID 250837011. /wiki/Bibcode_(identifier)