The mechanism of transgranular fracture may vary depending on the material and surrounding conditions under which the fracture occurs.3 However, some general steps are typically involved in the transgranular fracture process:
In ductile metals, the plastic deformation of the material can be a critical factor in the transgranular fracture process, while in brittle materials such as ceramics, the formation and growth of cracks can be influenced by factors such as grain size, porosity, and the presence of impurities or other defects.
The fracture behavior of materials can be significantly changed by the use of precipitation-based grain boundary design. For example, Meindlhumer et. al.9 produced a thin film of AlCrN containing a specific distribution of precipitates within the grain boundaries in precipitation-based grain boundary design. The precipitates acted as a barrier to crack propagation, increasing the material's resistance to intergranular cracking. Additionally, the precipitates altered the stress distribution within the material, promoting transgranular crack propagation instead. Furthermore, smaller precipitates with a more uniform distribution have been shown to be more effective at promoting transgranular fracture.
Parks, Brian (2012-03-16). "Tubular fracturing: Pinpointing the cause". Drilling Contractor. Retrieved 2023-05-11. https://drillingcontractor.org/tubular-fracturing-pinpointing-the-cause-14544 ↩
"Types of Brittle Fracture". Archived from the original on 2016-01-30. https://web.archive.org/web/20160130020054/http://www.sv.vt.edu/classes/MSE2094_NoteBook/97ClassProj/exper/ballard/www/ballard.html ↩
Courtney, Thomas H. (2005). Mechanical Behavior of Materials (2nd ed.). Waveland Press. ISBN 1577664256. 1577664256 ↩
Syu, D. -G. C.; Ghosh, A. K. (1994-07-15). "The effect of temperature on the fracture mechanism in 2014A1/15vol.%Al2O3 composite". Materials Science and Engineering: A. 184 (1): 27–35. doi:10.1016/0921-5093(94)91071-5. hdl:2027.42/31436. ISSN 0921-5093. https://www.sciencedirect.com/science/article/abs/pii/0921509394910715 ↩
Charitidis, C A; Karakasidis, T E; Kavouras, P; Karakostas, Th (2007-07-04). "The size effect of crystalline inclusions on the fracture modes in glass–ceramic materials". Journal of Physics: Condensed Matter. 19 (26): 266209. doi:10.1088/0953-8984/19/26/266209. ISSN 0953-8984. PMID 21694086. https://iopscience.iop.org/article/10.1088/0953-8984/19/26/266209 ↩
Robertson, I. M.; Tabata, T.; Wei, W.; Heubaum, F.; Birnbaum, H. K. (1984-08-01). "Hydrogen embrittlement and grain boundary fracture". Scripta Metallurgica. 18 (8): 841–846. doi:10.1016/0036-9748(84)90407-1. ISSN 0036-9748. https://www.sciencedirect.com/science/article/abs/pii/0036974884904071 ↩
Singh, Dileep; Shetty, Dinesh K. (January 1989). "Fracture Toughness of Polycrystalline Ceramics in Combined Mode I and Mode II Loading". Journal of the American Ceramic Society. 72 (1): 78–84. doi:10.1111/j.1151-2916.1989.tb05957.x. ISSN 0002-7820. https://ceramics.onlinelibrary.wiley.com/doi/10.1111/j.1151-2916.1989.tb05957.x ↩
Pedersen, Ketill O.; Børvik, Tore; Hopperstad, Odd Sture (2011-01-01). "Fracture mechanisms of aluminium alloy AA7075-T651 under various loading conditions". Materials & Design. 32 (1): 97–107. doi:10.1016/j.matdes.2010.06.029. ISSN 0261-3069. https://www.sciencedirect.com/science/article/abs/pii/S0261306910004048 ↩
Meindlhumer, M.; Ziegelwanger, T.; Zalesak, J.; Hans, M.; Löfler, L.; Spor, S.; Jäger, N.; Stark, A.; Hruby, H.; Daniel, R.; Holec, D.; Schneider, J. M.; Mitterer, C.; Keckes, J. (2022-09-15). "Precipitation-based grain boundary design alters Inter- to Trans-granular Fracture in AlCrN Thin Films". Acta Materialia. 237: 118156. doi:10.1016/j.actamat.2022.118156. ISSN 1359-6454. https://www.sciencedirect.com/science/article/pii/S1359645422005377 ↩