Let (X, T) be a topological space and let Σ be a σ-algebra on X. Let μ be a measure on (X, Σ). A measurable subset A of X is said to be inner regular if
This property is sometimes referred to in words as "approximation from within by compact sets." Some authors12 use the term tight as a synonym for inner regular. This use of the term is closely related to tightness of a family of measures, since a finite measure μ is inner regular if and only if, for all ε > 0, there is some compact subset K of X such that μ(X \ K) < ε. This is precisely the condition that the singleton collection of measures {μ} is tight.
It is said to be outer regular if
Ambrosio, L., Gigli, N. & Savaré, G. (2005). Gradient Flows in Metric Spaces and in the Space of Probability Measures. Basel: ETH Zürich, Birkhäuser Verlag. ISBN 3-7643-2428-7.{{cite book}}: CS1 maint: multiple names: authors list (link) 3-7643-2428-7 ↩
Parthasarathy, K. R. (2005). Probability measures on metric spaces. AMS Chelsea Publishing, Providence, RI. xii+276. ISBN 0-8218-3889-X. MR2169627 0-8218-3889-X ↩