Let X = ( x i j ) ∈ R m × n {\displaystyle \mathbf {X} =(x_{ij})\in \mathbb {R} ^{m\times n}} denote an observed data matrix whose n {\displaystyle n} columns correspond to observations of m {\displaystyle m} -variate mixed vectors. It is assumed that X {\displaystyle \mathbf {X} } is prewhitened, that is, its rows have a sample mean equaling zero and a sample covariance is the m × m {\displaystyle m\times m} dimensional identity matrix, that is,
Applying JADE to X {\displaystyle \mathbf {X} } entails
to estimate the source components given by the rows of the m × n {\displaystyle m\times n} dimensional matrix Z := O − 1 X {\displaystyle \mathbf {Z} :=\mathbf {O} ^{-1}\mathbf {X} } .2
Cardoso, Jean-François; Souloumiac, Antoine (1993). "Blind beamforming for non-Gaussian signals". IEE Proceedings F - Radar and Signal Processing. 140 (6): 362–370. CiteSeerX 10.1.1.8.5684. doi:10.1049/ip-f-2.1993.0054. /wiki/CiteSeerX_(identifier) ↩
Cardoso, Jean-François (Jan 1999). "High-order contrasts for independent component analysis". Neural Computation. 11 (1): 157–192. CiteSeerX 10.1.1.308.8611. doi:10.1162/089976699300016863. /wiki/CiteSeerX_(identifier) ↩