Now, suppose that a nonsense mutation was introduced at the fourth codon in the 5′ DNA sequence (CGA) causing the cytosine to be replaced with thymine, yielding TGA in the 5′ DNA sequence and ACT in the complementary strand. Because ACT is transcribed as UGA, it is translated as a stop codon. This leads the remaining codons of the mRNA to not be translated into protein because the stop codon is prematurely reached during translation. This can yield a truncated (i.e., abbreviated) protein product, which quite often lacks the functionality of the normal, non-mutant protein.
All possible nonsense mutationsDeleterious outcomes represent the majority of nonsense mutations and are the most common outcome that is observed naturally. Deleterious nonsense mutations decreases the overall fitness and reproductive success of the organism. For example, a nonsense mutation occurring in a gene encoding a protein can cause structural or functional defects in the protein that disrupt cellular biology. Depending on the significance of the functions of this protein, this disruption now could be detrimental to the fitness and survival of that organism.
When a nonsense mutation is neutral, it does not provide benefits or harm. These occur when the effects of the mutation are unnoticed. In other words, this means that the mutation does not positively or negatively affect the organism. As this effect is unnoticed, there is a lack of papers describing such mutations. An example of this type of nonsense mutation is one that occurs directly before the original stop codon for that given protein. Because this mutation occurred in such close proximity to the end of the protein chain, the impact of this change might not be as significant. This would suggest that this amino acid that was mutated did not have a large impact on the overall structure or function of the protein or the organism as a whole. This scenario is rare, but possible.
Beneficial nonsense mutations are considered as the rarest of possible nonsense mutation outcomes. Beneficial nonsense mutations increase the overall fitness and reproductive success of an organism, opposite of the effects of a deleterious mutation. Because a nonsense mutation introduces a premature stop codon within a sequence of DNA, it is extremely unlikely that this scenario can actually benefit the organism. An example of this would occur with a nonsense mutation that impacts a dysfunctional protein that releases toxins. The stop codon that this mutation brings would stop this dysfunctional protein from properly carrying out its function. Stopping this protein from performing at full strength causes less toxin to be released and the fitness of the organism to be improved. These types of situations with nonsense mutations occur a lot less frequently than the deleterious outcomes.
Despite an expected tendency for premature termination codons to yield shortened polypeptide products, in fact the formation of truncated proteins does not occur often in vivo. Many organisms—including humans and lower species, such as yeast—employ a nonsense-mediated mRNA decay pathway, which degrades mRNAs containing nonsense mutations before they are able to be translated into nonfunctional polypeptides.
Because nonsense mutations result in altered mRNA with a premature stop codon, one way of suppressing the damage done to the final protein's function is to alter the tRNA that reads the mRNA. These tRNA’s are termed suppressor tRNA's. If the stop codon is UAG, any other amino acid tRNA could be altered from its original anticodon to AUC so it will recognize the UAG codon instead. This will result in the protein not being truncated, but it may still have an altered amino acid. These suppressor tRNA mutations are only possible if the cell has more than one tRNA that reads a particular codon, otherwise the mutation would kill the cell. The only stop codons are UAG, UAA, and UGA. UAG and UAA suppressors read their respective stop codons instead of their original codon, but UAA suppressors also read UAG due to wobble base pairing. UGA suppressors are very rare. Another hurdle to pass in this technique is the fact that stop codons are also recognized by release factors, so the tRNA still needs to compete with the release factors to keep the translation going. Because of this, suppression is usually only 10-40% successful. These suppressor tRNA mutations also target stop codons that are not mutations, causing some proteins to be much longer than they should be. Only bacteria and lower eukaryotes can survive with these mutations, mammal and insect cells die as a result of a suppressor mutation.
Nonsense mutations comprise around 20% of single nucleotide substitutions within protein coding sequences that result in human disease. Nonsense mutation-mediated pathology is often attributed to reduced amounts of full-length protein, because only 5-25% of transcripts possessing nonsense mutations do not undergo nonsense-mediated decay (NMD). Translation of the remaining nonsense-bearing mRNA may generate abbreviated protein variants with toxic effects.
Twenty-three different single-point nucleotide substitutions are capable of converting a non-stop codon into a stop-codon, with the mutations CGA
⟶
{\displaystyle \longrightarrow }
TGA and CAG
⟶
{\displaystyle \longrightarrow }
TAG being the most common disease-related substitutions characterized in the Human Gene Mutation Database (HGMD). As a result of different substitution frequencies for each nucleotide, the proportions of the three stop codons generated by disease-inducing nonsense mutations differs from stop codon distributions in non-diseased gene variants. Notably, the codon TAG is overrepresented, while the TGA and TAA codons are underrepresented in disease-related nonsense mutations.
Translation termination efficiency is influenced by the specific stop codon sequence on the mRNA, with the UAA sequence yielding the highest termination. Sequences surrounding the stop codon also impact termination efficiency. Consequently, the underlying pathology of diseases caused by nonsense mutations is ultimately dependent on the identity of the mutated gene, and specific location of the mutation.
Nonsense mutations in other genes may also drive dysfunction of several tissue or organ systems:
Therapeutics for diseases caused by nonsense mutations attempt to recapitulate wild-type function by decreasing the efficacy of NMD, facilitating readthrough of the premature stop codon during translation, or editing the genomic nonsense mutation.
Sharma, Jyoti; Keeling, Kim M.; Rowe, Steven M. (2020-08-15). "Pharmacological approaches for targeting cystic fibrosis nonsense mutations". European Journal of Medicinal Chemistry. 200: 112436. doi:10.1016/j.ejmech.2020.112436. PMC 7384597. PMID 32512483. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7384597
Potapova, Nadezhda A. (2022-05-01). "Nonsense Mutations in Eukaryotes". Biochemistry (Moscow). 87 (5): 400–412. doi:10.1134/S0006297922050029. ISSN 1608-3040. PMID 35790376. S2CID 248793651. https://doi.org/10.1134/S0006297922050029
Potapova, Nadezhda A. (2022-05-01). "Nonsense Mutations in Eukaryotes". Biochemistry (Moscow). 87 (5): 400–412. doi:10.1134/S0006297922050029. ISSN 1608-3040. PMID 35790376. S2CID 248793651. https://doi.org/10.1134/S0006297922050029
Balasubramanian, Suganthi; Fu, Yao; Pawashe, Mayur; McGillivray, Patrick; Jin, Mike; Liu, Jeremy; Karczewski, Konrad J.; MacArthur, Daniel G.; Gerstein, Mark (2017-08-29). "Using ALoFT to determine the impact of putative loss-of-function variants in protein-coding genes". Nature Communications. 8 (1): 382. Bibcode:2017NatCo...8..382B. doi:10.1038/s41467-017-00443-5. PMC 5575292. PMID 28851873. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5575292
Clark, David P.; Pazdernik, Nanette J.; McGehee, Michelle R. (2019), "Mutations and Repair", Molecular Biology, Elsevier, pp. 832–879, doi:10.1016/b978-0-12-813288-3.00026-4, ISBN 9780128132883, S2CID 239340633, retrieved 2022-12-02 9780128132883
"Nonsense mutation correction in human diseases an approach for targeted medicine | WorldCat.org". www.worldcat.org. Retrieved 2022-12-02. https://www.worldcat.org/title/1281858870
Guimbellot, Jennifer; Sharma, Jyoti; Rowe, Steven M. (November 2017). "Toward inclusive therapy with CFTR modulators: Progress and challenges". Pediatric Pulmonology. 52 (Suppl 48): S4 – S14. doi:10.1002/ppul.23773. PMC 6208153. PMID 28881097. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6208153
"Nonsense mutation correction in human diseases an approach for targeted medicine | WorldCat.org". www.worldcat.org. Retrieved 2022-12-02. https://www.worldcat.org/title/1281858870
Benhabiles, Hana; Jia, Jieshuang; Lejeune, Fabrice (2016-01-01), Benhabiles, Hana; Jia, Jieshuang; Lejeune, Fabrice (eds.), "Ch. 2. Pathologies Susceptible to be Targeted for Nonsense Mutation Therapies", Nonsense Mutation Correction in Human Diseases, Boston: Academic Press, pp. 77–105, ISBN 978-0-12-804468-1, retrieved 2022-12-02 978-0-12-804468-1
"Nonsense mutation correction in human diseases an approach for targeted medicine | WorldCat.org". www.worldcat.org. Retrieved 2022-12-02. https://www.worldcat.org/title/1281858870
Sharma, Jyoti; Keeling, Kim M.; Rowe, Steven M. (2020-08-15). "Pharmacological approaches for targeting cystic fibrosis nonsense mutations". European Journal of Medicinal Chemistry. 200: 112436. doi:10.1016/j.ejmech.2020.112436. PMC 7384597. PMID 32512483. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7384597
"Nonsense Mutation — Definition, Example, Outcomes". Biology Dictionary. 2018-08-26. Retrieved 2022-12-02. https://biologydictionary.net/nonsense-mutation/
"Nonsense Mutation — Definition, Example, Outcomes". Biology Dictionary. 2018-08-26. Retrieved 2022-12-02. https://biologydictionary.net/nonsense-mutation/
"Nonsense Mutation — Definition, Example, Outcomes". Biology Dictionary. 2018-08-26. Retrieved 2022-12-02. https://biologydictionary.net/nonsense-mutation/
"Nonsense Mutation — Definition, Example, Outcomes". Biology Dictionary. 2018-08-26. Retrieved 2022-12-02. https://biologydictionary.net/nonsense-mutation/
Potapova, Nadezhda A. (2022-05-01). "Nonsense Mutations in Eukaryotes". Biochemistry (Moscow). 87 (5): 400–412. doi:10.1134/S0006297922050029. ISSN 1608-3040. PMID 35790376. S2CID 248793651. https://doi.org/10.1134/S0006297922050029
"Nonsense Mutation — Definition, Example, Outcomes". Biology Dictionary. 2018-08-26. Retrieved 2022-12-02. https://biologydictionary.net/nonsense-mutation/
Sharma, Jyoti; Keeling, Kim M.; Rowe, Steven M. (2020-08-15). "Pharmacological approaches for targeting cystic fibrosis nonsense mutations". European Journal of Medicinal Chemistry. 200: 112436. doi:10.1016/j.ejmech.2020.112436. PMC 7384597. PMID 32512483. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7384597
"Nonsense Mutation — Definition, Example, Outcomes". Biology Dictionary. 2018-08-26. Retrieved 2022-12-02. https://biologydictionary.net/nonsense-mutation/
Clark, David P.; Pazdernik, Nanette J.; McGehee, Michelle R. (2019), "Mutations and Repair", Molecular Biology, Elsevier, pp. 832–879, doi:10.1016/b978-0-12-813288-3.00026-4, ISBN 9780128132883, S2CID 239340633, retrieved 2022-12-02 9780128132883
Edgar B (October 2004). "The genome of bacteriophage T4: an archeological dig". Genetics. 168 (2): 575–582. doi:10.1093/genetics/168.2.575. PMC 1448817. PMID 15514035. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1448817
Mort, Matthew; Ivanov, Dobril; Cooper, David N.; Chuzhanova, Nadia A. (August 2008). "A meta-analysis of nonsense mutations causing human genetic disease". Human Mutation. 29 (8): 1037–47. doi:10.1002/humu.20763. PMID 18454449. S2CID 205918343. https://onlinelibrary.wiley.com/doi/10.1002/humu.20763
Isken, Olaf; Maquat, Lynne E. (2007-08-01). "Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function". Genes & Development. 21 (15): 1833–56. doi:10.1101/gad.1566807. ISSN 0890-9369. PMID 17671086. https://doi.org/10.1101%2Fgad.1566807
Mort, Matthew; Ivanov, Dobril; Cooper, David N.; Chuzhanova, Nadia A. (August 2008). "A meta-analysis of nonsense mutations causing human genetic disease". Human Mutation. 29 (8): 1037–47. doi:10.1002/humu.20763. PMID 18454449. S2CID 205918343. https://onlinelibrary.wiley.com/doi/10.1002/humu.20763
Khajavi, Mehrdad; Inoue, Ken; Lupski, James R. (October 2006). "Nonsense-mediated mRNA decay modulates clinical outcome of genetic disease". European Journal of Human Genetics. 14 (10): 1074–81. doi:10.1038/sj.ejhg.5201649. ISSN 1476-5438. PMID 16757948. S2CID 3450423. https://doi.org/10.1038%2Fsj.ejhg.5201649
Mort, Matthew; Ivanov, Dobril; Cooper, David N.; Chuzhanova, Nadia A. (August 2008). "A meta-analysis of nonsense mutations causing human genetic disease". Human Mutation. 29 (8): 1037–47. doi:10.1002/humu.20763. PMID 18454449. S2CID 205918343. https://onlinelibrary.wiley.com/doi/10.1002/humu.20763
Mort, Matthew; Ivanov, Dobril; Cooper, David N.; Chuzhanova, Nadia A. (August 2008). "A meta-analysis of nonsense mutations causing human genetic disease". Human Mutation. 29 (8): 1037–47. doi:10.1002/humu.20763. PMID 18454449. S2CID 205918343. https://onlinelibrary.wiley.com/doi/10.1002/humu.20763
Mort, Matthew; Ivanov, Dobril; Cooper, David N.; Chuzhanova, Nadia A. (August 2008). "A meta-analysis of nonsense mutations causing human genetic disease". Human Mutation. 29 (8): 1037–47. doi:10.1002/humu.20763. PMID 18454449. S2CID 205918343. https://onlinelibrary.wiley.com/doi/10.1002/humu.20763
Keeling, Kim M.; Du, Ming; Bedwell, David M. (2013). Therapies of Nonsense-Associated Diseases. Madame Curie Bioscience Database [Internet]. Landes Bioscience. NBK6183. https://www.ncbi.nlm.nih.gov/books/NBK6183/
Keeling, Kim M.; Du, Ming; Bedwell, David M. (2013). Therapies of Nonsense-Associated Diseases. Madame Curie Bioscience Database [Internet]. Landes Bioscience. NBK6183. https://www.ncbi.nlm.nih.gov/books/NBK6183/
Shintani, M; Yagi, H; Nakayama, T; Saji, T; Matsuoka, R (2009-05-01). "A new nonsense mutation of SMAD8 associated with pulmonary arterial hypertension". Journal of Medical Genetics. 46 (5): 331–7. doi:10.1136/jmg.2008.062703. ISSN 0022-2593. PMID 19211612. S2CID 44932041. https://jmg.bmj.com/lookup/doi/10.1136/jmg.2008.062703
Shintani, M; Yagi, H; Nakayama, T; Saji, T; Matsuoka, R (2009-05-01). "A new nonsense mutation of SMAD8 associated with pulmonary arterial hypertension". Journal of Medical Genetics. 46 (5): 331–7. doi:10.1136/jmg.2008.062703. ISSN 0022-2593. PMID 19211612. S2CID 44932041. https://jmg.bmj.com/lookup/doi/10.1136/jmg.2008.062703
Shintani, M; Yagi, H; Nakayama, T; Saji, T; Matsuoka, R (2009-05-01). "A new nonsense mutation of SMAD8 associated with pulmonary arterial hypertension". Journal of Medical Genetics. 46 (5): 331–7. doi:10.1136/jmg.2008.062703. ISSN 0022-2593. PMID 19211612. S2CID 44932041. https://jmg.bmj.com/lookup/doi/10.1136/jmg.2008.062703
Shintani, M; Yagi, H; Nakayama, T; Saji, T; Matsuoka, R (2009-05-01). "A new nonsense mutation of SMAD8 associated with pulmonary arterial hypertension". Journal of Medical Genetics. 46 (5): 331–7. doi:10.1136/jmg.2008.062703. ISSN 0022-2593. PMID 19211612. S2CID 44932041. https://jmg.bmj.com/lookup/doi/10.1136/jmg.2008.062703
Styrkarsdottir, Unnur; Thorleifsson, Gudmar; Sulem, Patrick; Gudbjartsson, Daniel F.; Sigurdsson, Asgeir; Jonasdottir, Aslaug; Jonasdottir, Adalbjorg; Oddsson, Asmundur; Helgason, Agnar; Magnusson, Olafur T.; Walters, G. Bragi; Frigge, Michael L.; Helgadottir, Hafdis T.; Johannsdottir, Hrefna; Bergsteinsdottir, Kristin (2013-05-23). "Nonsense mutation in the LGR4 gene is associated with several human diseases and other traits". Nature. 497 (7450): 517–520. Bibcode:2013Natur.497..517S. doi:10.1038/nature12124. ISSN 0028-0836. PMID 23644456. S2CID 205233843. http://www.nature.com/articles/nature12124
Styrkarsdottir, Unnur; Thorleifsson, Gudmar; Sulem, Patrick; Gudbjartsson, Daniel F.; Sigurdsson, Asgeir; Jonasdottir, Aslaug; Jonasdottir, Adalbjorg; Oddsson, Asmundur; Helgason, Agnar; Magnusson, Olafur T.; Walters, G. Bragi; Frigge, Michael L.; Helgadottir, Hafdis T.; Johannsdottir, Hrefna; Bergsteinsdottir, Kristin (2013-05-23). "Nonsense mutation in the LGR4 gene is associated with several human diseases and other traits". Nature. 497 (7450): 517–520. Bibcode:2013Natur.497..517S. doi:10.1038/nature12124. ISSN 0028-0836. PMID 23644456. S2CID 205233843. http://www.nature.com/articles/nature12124
Styrkarsdottir, Unnur; Thorleifsson, Gudmar; Sulem, Patrick; Gudbjartsson, Daniel F.; Sigurdsson, Asgeir; Jonasdottir, Aslaug; Jonasdottir, Adalbjorg; Oddsson, Asmundur; Helgason, Agnar; Magnusson, Olafur T.; Walters, G. Bragi; Frigge, Michael L.; Helgadottir, Hafdis T.; Johannsdottir, Hrefna; Bergsteinsdottir, Kristin (2013-05-23). "Nonsense mutation in the LGR4 gene is associated with several human diseases and other traits". Nature. 497 (7450): 517–520. Bibcode:2013Natur.497..517S. doi:10.1038/nature12124. ISSN 0028-0836. PMID 23644456. S2CID 205233843. http://www.nature.com/articles/nature12124
Styrkarsdottir, Unnur; Thorleifsson, Gudmar; Sulem, Patrick; Gudbjartsson, Daniel F.; Sigurdsson, Asgeir; Jonasdottir, Aslaug; Jonasdottir, Adalbjorg; Oddsson, Asmundur; Helgason, Agnar; Magnusson, Olafur T.; Walters, G. Bragi; Frigge, Michael L.; Helgadottir, Hafdis T.; Johannsdottir, Hrefna; Bergsteinsdottir, Kristin (2013-05-23). "Nonsense mutation in the LGR4 gene is associated with several human diseases and other traits". Nature. 497 (7450): 517–520. Bibcode:2013Natur.497..517S. doi:10.1038/nature12124. ISSN 0028-0836. PMID 23644456. S2CID 205233843. http://www.nature.com/articles/nature12124
Styrkarsdottir, Unnur; Thorleifsson, Gudmar; Sulem, Patrick; Gudbjartsson, Daniel F.; Sigurdsson, Asgeir; Jonasdottir, Aslaug; Jonasdottir, Adalbjorg; Oddsson, Asmundur; Helgason, Agnar; Magnusson, Olafur T.; Walters, G. Bragi; Frigge, Michael L.; Helgadottir, Hafdis T.; Johannsdottir, Hrefna; Bergsteinsdottir, Kristin (2013-05-23). "Nonsense mutation in the LGR4 gene is associated with several human diseases and other traits". Nature. 497 (7450): 517–520. Bibcode:2013Natur.497..517S. doi:10.1038/nature12124. ISSN 0028-0836. PMID 23644456. S2CID 205233843. http://www.nature.com/articles/nature12124
Morais, Pedro; Adachi, Hironori; Yu, Yi-Tao (2020-06-20). "Suppression of Nonsense Mutations by New Emerging Technologies". International Journal of Molecular Sciences. 21 (12): 4394. doi:10.3390/ijms21124394. PMC 7352488. PMID 32575694. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352488
Morais, Pedro; Adachi, Hironori; Yu, Yi-Tao (2020-06-20). "Suppression of Nonsense Mutations by New Emerging Technologies". International Journal of Molecular Sciences. 21 (12): 4394. doi:10.3390/ijms21124394. PMC 7352488. PMID 32575694. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352488
Huang, Lulu; Aghajan, Mariam; Quesenberry, Tianna; Low, Audrey; Murray, Susan F.; Monia, Brett P.; Guo, Shuling (August 2019). "Targeting Translation Termination Machinery with Antisense Oligonucleotides for Diseases Caused by Nonsense Mutations". Nucleic Acid Therapeutics. 29 (4): 175–186. doi:10.1089/nat.2019.0779. PMC 6686700. PMID 31070517. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686700
Morais, Pedro; Adachi, Hironori; Yu, Yi-Tao (2020-06-20). "Suppression of Nonsense Mutations by New Emerging Technologies". International Journal of Molecular Sciences. 21 (12): 4394. doi:10.3390/ijms21124394. PMC 7352488. PMID 32575694. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352488
Lee, Choongil; Hyun Jo, Dong; Hwang, Gue-Ho; Yu, Jihyeon; Kim, Jin Hyoung; Park, Se-eun; Kim, Jin-Soo; Kim, Jeong Hun; Bae, Sangsu (2019-08-07). "CRISPR-Pass: Gene Rescue of Nonsense Mutations Using Adenine Base Editors". Molecular Therapy. 27 (8): 1364–71. doi:10.1016/j.ymthe.2019.05.013. PMC 6698196. PMID 31164261. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6698196
Morais, Pedro; Adachi, Hironori; Yu, Yi-Tao (2020-06-20). "Suppression of Nonsense Mutations by New Emerging Technologies". International Journal of Molecular Sciences. 21 (12): 4394. doi:10.3390/ijms21124394. PMC 7352488. PMID 32575694. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352488
Welch, Ellen M.; Barton, Elisabeth R.; Zhuo, Jin; Tomizawa, Yuki; Friesen, Westley J.; Trifillis, Panayiota; Paushkin, Sergey; Patel, Meenal; Trotta, Christopher R.; Hwang, Seongwoo; Wilde, Richard G.; Karp, Gary; Takasugi, James; Chen, Guangming; Jones, Stephen (2007-05-03). "PTC124 targets genetic disorders caused by nonsense mutations". Nature. 447 (7140): 87–91. Bibcode:2007Natur.447...87W. doi:10.1038/nature05756. ISSN 1476-4687. PMID 17450125. S2CID 4423529. https://pubmed.ncbi.nlm.nih.gov/17450125
"PTC Therapeutics". PTC Therapeutics | Measured by Moments. Retrieved 2022-12-01. https://www.ptcbio.com/our-pipeline/approved-medicines/
"ANVISA approves PTC Translarna indication expansion to ambulatory children". Pharmaceutical Technology. 2021-10-26. Retrieved 2022-12-01. https://www.pharmaceutical-technology.com/news/anvisa-ptc-translarna-indication-children/
Kerem, Eitan; Konstan, Michael W; De Boeck, Kris; Accurso, Frank J; Sermet-Gaudelus, Isabelle; Wilschanski, Michael; Elborn, J Stuart; Melotti, Paola; Bronsveld, Inez (2014-07-01). "Ataluren for the treatment of nonsense-mutation cystic fibrosis: a randomised, double-blind, placebo-controlled phase 3 trial". The Lancet Respiratory Medicine. 2 (7): 539–547. doi:10.1016/S2213-2600(14)70100-6. PMC 4154311. PMID 24836205. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4154311
Konstan, M. W.; VanDevanter, D. R.; Rowe, S. M.; Wilschanski, M.; Kerem, E.; Sermet-Gaudelus, I.; DiMango, E.; Melotti, P.; McIntosh, J.; De Boeck, K.; ACT CF Study Group (July 2020). "Efficacy and safety of ataluren in patients with nonsense-mutation cystic fibrosis not receiving chronic inhaled aminoglycosides: The international, randomized, double-blind, placebo-controlled Ataluren Confirmatory Trial in Cystic Fibrosis (ACT CF)". Journal of Cystic Fibrosis. 19 (4): 595–601. doi:10.1016/j.jcf.2020.01.007. PMC 9167581. PMID 31983658. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9167581