A topological space is called a Polish space if it is a separable complete metrizable space and that a Souslin space is the continuous image of a Polish space. The weak dual of a separable Fréchet space and the strong dual of a separable Fréchet–Montel space are Souslin spaces. Also, the space of distributions and all Lp-spaces over open subsets of Euclidean space as well as many other spaces that occur in analysis are Souslin spaces. The Borel graph theorem states:3
An improvement upon this theorem, proved by A. Martineau, uses K-analytic spaces. A topological space X {\displaystyle X} is called a K σ δ {\displaystyle K_{\sigma \delta }} if it is the countable intersection of countable unions of compact sets. A Hausdorff topological space Y {\displaystyle Y} is called K-analytic if it is the continuous image of a K σ δ {\displaystyle K_{\sigma \delta }} space (that is, if there is a K σ δ {\displaystyle K_{\sigma \delta }} space X {\displaystyle X} and a continuous map of X {\displaystyle X} onto Y {\displaystyle Y} ). Every compact set is K-analytic so that there are non-separable K-analytic spaces. Also, every Polish, Souslin, and reflexive Fréchet space is K-analytic as is the weak dual of a Fréchet space. The generalized theorem states:4
Trèves 2006, p. 549. - Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322. https://search.worldcat.org/oclc/853623322 ↩
Trèves 2006, pp. 557–558. - Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322. https://search.worldcat.org/oclc/853623322 ↩