The theory of mean-field interacting particle models had certainly started by the mid-1960s, with the work of Henry P. McKean Jr. on Markov interpretations of a class of nonlinear parabolic partial differential equations arising in fluid mechanics. The mathematical foundations of these classes of models were developed from the mid-1980s to the mid-1990s by several mathematicians, including Werner Braun, Klaus Hepp, Karl Oelschläger, Gérard Ben Arous and Marc Brunaud, Donald Dawson, Jean Vaillancourt and Jürgen Gärtner, Christian Léonard, Sylvie Méléard, Sylvie Roelly, Alain-Sol Sznitman and Hiroshi Tanaka for diffusion type models; F. Alberto Grünbaum, Tokuzo Shiga, Hiroshi Tanaka,
Sylvie Méléard and Carl Graham for general classes of interacting jump-diffusion processes.
The first pioneering articles on the applications of these heuristic-like particle methods in nonlinear filtering problems were the independent studies of Neil Gordon, David Salmon and Adrian Smith (bootstrap filter), Genshiro Kitagawa (Monte Carlo filter)
, and the one by Himilcon Carvalho, Pierre Del Moral, André Monin and Gérard Salut published in the 1990s. The term interacting "particle filters" was first coined in 1996 by Del Moral. Particle filters were also developed in signal processing in the early 1989-1992 by P. Del Moral, J.C. Noyer, G. Rigal, and G. Salut in the LAAS-CNRS in a series of restricted and classified research reports with STCAN (Service Technique des Constructions et Armes Navales), the IT company DIGILOG, and the LAAS-CNRS (the Laboratory for Analysis and Architecture of Systems) on RADAR/SONAR and GPS signal processing problems.
The foundations and the first rigorous analysis on the convergence of genetic type models and mean field Feynman-Kac particle methods are due to Pierre Del Moral in 1996. Branching type particle methods with varying population sizes were also developed in the end of the 1990s by Dan Crisan, Jessica Gaines and Terry Lyons, and by Dan Crisan, Pierre Del Moral and Terry Lyons. The first uniform convergence results with respect to the time parameter for mean field particle models were developed in the end of the 1990s by Pierre Del Moral and Alice Guionnet for interacting jump type processes, and by Florent Malrieu for nonlinear diffusion type processes.
New classes of mean field particle simulation techniques for Feynman-Kac path-integration problems includes genealogical tree based models, backward particle models, adaptive mean field particle models, island type particle models, and particle Markov chain Monte Carlo methods
The continuous time version of these particle models are mean field Moran type particle interpretations of the robust optimal filter evolution equations or the Kushner-Stratonotich stochastic partial differential equation. These genetic type mean field particle algorithms also termed Particle Filters and Sequential Monte Carlo methods are extensively and routinely used in operation research and statistical inference
. The term "particle filters" was first coined in 1996 by Del Moral, and the term "sequential Monte Carlo" by Liu and Chen in 1998. Subset simulation and Monte Carlo splitting techniques are particular instances of genetic particle schemes and Feynman-Kac particle models equipped with Markov chain Monte Carlo mutation transitions
for some, possibly nonlinear, mapping
Φ
:
P
(
S
)
→
P
(
S
)
.
{\displaystyle \Phi :P(S)\to P(S).}
These distributions are given by vectors
η
n
=
(
η
n
(
x
)
)
x
∈
S
,
{\displaystyle \eta _{n}=(\eta _{n}(x))_{x\in S},}
Therefore,
Φ
{\displaystyle \Phi }
is a mapping from the
(
s
−
1
)
{\displaystyle (s-1)}
-unit simplex into itself, where s stands for the cardinality of the set S. When s is too large, solving equation (1) is intractable or computationally very costly. One natural way to approximate these evolution equations is to reduce sequentially the state space using a mean field particle model. One of the simplest mean field simulation scheme is defined by the Markov chain
ξ
n
(
N
)
=
(
ξ
n
(
N
,
1
)
,
⋯
,
ξ
n
(
N
,
N
)
)
{\displaystyle \xi _{n}^{(N)}=\left(\xi _{n}^{(N,1)},\cdots ,\xi _{n}^{(N,N)}\right)}
on the product space
S
N
{\displaystyle S^{N}}
, starting with N independent random variables with probability distribution
η
0
{\displaystyle \eta _{0}}
and elementary transitions
P
(
ξ
n
+
1
(
N
,
1
)
=
y
1
,
⋯
,
ξ
n
+
1
(
N
,
N
)
=
y
N
|
ξ
n
(
N
)
)
=
∏
i
=
1
N
Φ
(
η
n
N
)
(
y
i
)
,
{\displaystyle \mathbf {P} \left(\left.\xi _{n+1}^{(N,1)}=y^{1},\cdots ,\xi _{n+1}^{(N,N)}=y^{N}\right|\xi _{n}^{(N)}\right)=\prod _{i=1}^{N}\Phi \left(\eta _{n}^{N}\right)\left(y^{i}\right),}
where
1
x
{\displaystyle 1_{x}}
is the indicator function of the state x.
In other words, given
ξ
n
(
N
)
{\displaystyle \xi _{n}^{(N)}}
the samples
ξ
n
+
1
(
N
)
{\displaystyle \xi _{n+1}^{(N)}}
are independent random variables with probability distribution
Φ
(
η
n
N
)
{\displaystyle \Phi \left(\eta _{n}^{N}\right)}
. The rationale behind this mean field simulation technique is the following: We expect that when
η
n
N
{\displaystyle \eta _{n}^{N}}
is a good approximation of
η
n
{\displaystyle \eta _{n}}
, then
Φ
(
η
n
N
)
{\displaystyle \Phi \left(\eta _{n}^{N}\right)}
is an approximation of
Φ
(
η
n
)
=
η
n
+
1
{\displaystyle \Phi \left(\eta _{n}\right)=\eta _{n+1}}
. Thus, since
η
n
+
1
N
{\displaystyle \eta _{n+1}^{N}}
is the empirical measure of N conditionally independent random variables with common probability distribution
Φ
(
η
n
N
)
{\displaystyle \Phi \left(\eta _{n}^{N}\right)}
, we expect
η
n
+
1
N
{\displaystyle \eta _{n+1}^{N}}
to be a good approximation of
η
n
+
1
{\displaystyle \eta _{n+1}}
.
This formula allows us to interpret the sequence
(
η
0
,
η
1
,
⋯
)
{\displaystyle (\eta _{0},\eta _{1},\cdots )}
as the probability distributions of the random states
(
X
¯
0
,
X
¯
1
,
⋯
)
{\displaystyle \left({\overline {X}}_{0},{\overline {X}}_{1},\cdots \right)}
of the nonlinear Markov chain model with elementary transitions
P
(
X
¯
n
+
1
=
y
|
X
¯
n
=
x
)
=
K
η
n
(
x
,
y
)
,
Law
(
X
¯
n
)
=
η
n
.
{\displaystyle \mathbf {P} \left(\left.{\overline {X}}_{n+1}=y\right|{\overline {X}}_{n}=x\right)=K_{\eta _{n}}(x,y),\qquad {\text{Law}}({\overline {X}}_{n})=\eta _{n}.}
A collection of Markov transitions
K
η
n
{\displaystyle K_{\eta _{n}}}
satisfying the equation (1) is called a McKean interpretation of the sequence of measures
η
n
{\displaystyle \eta _{n}}
.
The mean field particle interpretation of (2) is now defined by the Markov chain
ξ
n
(
N
)
=
(
ξ
n
(
N
,
1
)
,
⋯
,
ξ
n
(
N
,
N
)
)
{\displaystyle \xi _{n}^{(N)}=\left(\xi _{n}^{(N,1)},\cdots ,\xi _{n}^{(N,N)}\right)}
on the product space
S
N
{\displaystyle S^{N}}
, starting with N independent random copies of
X
0
{\displaystyle X_{0}}
and elementary transitions
P
(
ξ
n
+
1
(
N
,
1
)
=
y
1
,
⋯
,
ξ
n
+
1
(
N
,
N
)
=
y
N
|
ξ
n
(
N
)
)
=
∏
i
=
1
N
K
n
+
1
,
η
n
N
(
ξ
n
(
N
,
i
)
,
y
i
)
,
{\displaystyle \mathbf {P} \left(\left.\xi _{n+1}^{(N,1)}=y^{1},\cdots ,\xi _{n+1}^{(N,N)}=y^{N}\right|\xi _{n}^{(N)}\right)=\prod _{i=1}^{N}K_{n+1,\eta _{n}^{N}}\left(\xi _{n}^{(N,i)},y^{i}\right),}
Under some weak regularity conditions on the mapping
Φ
{\displaystyle \Phi }
for any function
f
:
S
→
R
{\displaystyle f:S\to \mathbf {R} }
, we have the almost sure convergence
1
N
∑
j
=
1
N
f
(
ξ
n
(
N
,
j
)
)
→
N
↑
∞
E
(
f
(
X
¯
n
)
)
=
∑
x
∈
S
η
n
(
x
)
f
(
x
)
{\displaystyle {\frac {1}{N}}\sum _{j=1}^{N}f\left(\xi _{n}^{(N,j)}\right)\to _{N\uparrow \infty }E\left(f({\overline {X}}_{n})\right)=\sum _{x\in S}\eta _{n}(x)f(x)}
These nonlinear Markov processes and their mean field particle interpretation can be extended to time non homogeneous models on general measurable state spaces.
To illustrate the abstract models presented above, we consider a stochastic matrix
M
=
(
M
(
x
,
y
)
)
x
,
y
∈
S
{\displaystyle M=(M(x,y))_{x,y\in S}}
and some function
G
:
S
→
(
0
,
1
)
{\displaystyle G:S\to (0,1)}
. We associate with these two objects the mapping
{
Φ
:
P
(
S
)
→
P
(
S
)
(
η
n
(
x
)
)
x
∈
S
↦
(
Φ
(
η
n
)
(
y
)
)
y
∈
S
Φ
(
η
n
)
(
y
)
=
∑
x
∈
S
Ψ
G
(
η
n
)
(
x
)
M
(
x
,
y
)
{\displaystyle {\begin{cases}\Phi :P(S)\to P(S)\\(\eta _{n}(x))_{x\in S}\mapsto \left(\Phi (\eta _{n})(y)\right)_{y\in S}\end{cases}}\qquad \Phi (\eta _{n})(y)=\sum _{x\in S}\Psi _{G}(\eta _{n})(x)M(x,y)}
and the Boltzmann-Gibbs measures
Ψ
G
(
η
n
)
(
x
)
{\displaystyle \Psi _{G}(\eta _{n})(x)}
defined by
Ψ
G
(
η
n
)
(
x
)
=
η
n
(
x
)
G
(
x
)
∑
z
∈
S
η
n
(
z
)
G
(
z
)
.
{\displaystyle \Psi _{G}(\eta _{n})(x)={\frac {\eta _{n}(x)G(x)}{\sum _{z\in S}\eta _{n}(z)G(z)}}.}
We denote by
K
η
n
=
(
K
η
n
(
x
,
y
)
)
x
,
y
∈
S
{\displaystyle K_{\eta _{n}}=\left(K_{\eta _{n}}(x,y)\right)_{x,y\in S}}
the collection of stochastic matrices indexed by
η
n
∈
P
(
S
)
{\displaystyle \eta _{n}\in P(S)}
given by
K
η
n
(
x
,
y
)
=
ϵ
G
(
x
)
M
(
x
,
y
)
+
(
1
−
ϵ
G
(
x
)
)
Φ
(
η
n
)
(
y
)
{\displaystyle K_{\eta _{n}}(x,y)=\epsilon G(x)M(x,y)+(1-\epsilon G(x))\Phi (\eta _{n})(y)}
for some parameter
ϵ
∈
[
0
,
1
]
{\displaystyle \epsilon \in [0,1]}
. It is readily checked that the equation (2) is satisfied. In addition, we can also show (cf. for instance) that the solution of (1) is given by the Feynman-Kac formula
η
n
(
x
)
=
E
(
1
x
(
X
n
)
∏
p
=
0
n
−
1
G
(
X
p
)
)
E
(
∏
p
=
0
n
−
1
G
(
X
p
)
)
,
{\displaystyle \eta _{n}(x)={\frac {E\left(1_{x}(X_{n})\prod _{p=0}^{n-1}G(X_{p})\right)}{E\left(\prod _{p=0}^{n-1}G(X_{p})\right)}},}
with a Markov chain
X
n
{\displaystyle X_{n}}
with initial distribution
η
0
{\displaystyle \eta _{0}}
and Markov transition M.
For any function
f
:
S
→
R
{\displaystyle f:S\to \mathbf {R} }
we have
η
n
(
f
)
:=
∑
x
∈
S
η
n
(
x
)
f
(
x
)
=
E
(
f
(
X
n
)
∏
p
=
0
n
−
1
G
(
X
p
)
)
E
(
∏
p
=
0
n
−
1
G
(
X
p
)
)
{\displaystyle \eta _{n}(f):=\sum _{x\in S}\eta _{n}(x)f(x)={\frac {E\left(f(X_{n})\prod _{p=0}^{n-1}G(X_{p})\right)}{E\left(\prod _{p=0}^{n-1}G(X_{p})\right)}}}
If
G
(
x
)
=
1
{\displaystyle G(x)=1}
is the unit function and
ϵ
=
1
{\displaystyle \epsilon =1}
, then we have
K
η
n
(
x
,
y
)
=
M
(
x
,
y
)
=
P
(
X
n
+
1
=
y
|
X
n
=
x
)
,
η
n
(
x
)
=
E
(
1
x
(
X
n
)
)
=
P
(
X
n
=
x
)
.
{\displaystyle K_{\eta _{n}}(x,y)=M(x,y)=\mathbf {P} \left(\left.X_{n+1}=y\right|X_{n}=x\right),\qquad \eta _{n}(x)=E\left(1_{x}(X_{n})\right)=\mathbf {P} (X_{n}=x).}
The mean field particle interpretation of this Feynman-Kac model is defined by sampling sequentially N conditionally independent random variables
ξ
n
+
1
(
N
,
i
)
{\displaystyle \xi _{n+1}^{(N,i)}}
with probability distribution
K
n
+
1
,
η
n
N
(
ξ
n
(
N
,
i
)
,
y
)
=
ϵ
G
(
ξ
n
(
N
,
i
)
)
M
(
ξ
n
(
N
,
i
)
,
y
)
+
(
1
−
ϵ
G
(
ξ
n
(
N
,
i
)
)
)
∑
j
=
1
N
G
(
ξ
n
(
N
,
j
)
)
∑
k
=
1
N
G
(
ξ
n
(
N
,
k
)
)
M
(
ξ
n
(
N
,
j
)
,
y
)
{\displaystyle K_{n+1,\eta _{n}^{N}}\left(\xi _{n}^{(N,i)},y\right)=\epsilon G\left(\xi _{n}^{(N,i)}\right)M\left(\xi _{n}^{(N,i)},y\right)+\left(1-\epsilon G\left(\xi _{n}^{(N,i)}\right)\right)\sum _{j=1}^{N}{\frac {G\left(\xi _{n}^{(N,j)}\right)}{\sum _{k=1}^{N}G\left(\xi _{n}^{(N,k)}\right)}}M\left(\xi _{n}^{(N,j)},y\right)}
In other words, with a probability
ϵ
G
(
ξ
n
(
N
,
i
)
)
{\displaystyle \epsilon G\left(\xi _{n}^{(N,i)}\right)}
the particle
ξ
n
(
N
,
i
)
{\displaystyle \xi _{n}^{(N,i)}}
evolves to a new state
ξ
n
+
1
(
N
,
i
)
=
y
{\displaystyle \xi _{n+1}^{(N,i)}=y}
randomly chosen with the probability distribution
M
(
ξ
n
(
N
,
i
)
,
y
)
{\displaystyle M\left(\xi _{n}^{(N,i)},y\right)}
; otherwise,
ξ
n
(
N
,
i
)
{\displaystyle \xi _{n}^{(N,i)}}
jumps to a new location
ξ
n
(
N
,
j
)
{\displaystyle \xi _{n}^{(N,j)}}
randomly chosen with a probability proportional to
G
(
ξ
n
(
N
,
j
)
)
{\displaystyle G\left(\xi _{n}^{(N,j)}\right)}
and evolves to a new state
ξ
n
+
1
(
N
,
i
)
=
y
{\displaystyle \xi _{n+1}^{(N,i)}=y}
randomly chosen with the probability distribution
M
(
ξ
n
(
N
,
j
)
,
y
)
.
{\displaystyle M\left(\xi _{n}^{(N,j)},y\right).}
If
G
(
x
)
=
1
{\displaystyle G(x)=1}
is the unit function and
ϵ
=
1
{\displaystyle \epsilon =1}
, the interaction between the particle vanishes and the particle model reduces to a sequence of independent copies of the Markov chain
X
n
{\displaystyle X_{n}}
. When
ϵ
=
0
{\displaystyle \epsilon =0}
the mean field particle model described above reduces to a simple mutation-selection genetic algorithm with fitness function G and mutation transition M. These nonlinear Markov chain models and their mean field particle interpretation can be extended to time non homogeneous models on general measurable state spaces (including transition states, path spaces and random excursion spaces) and continuous time models.
We consider a sequence of real valued random variables
(
X
¯
0
,
X
¯
1
,
⋯
)
{\displaystyle \left({\overline {X}}_{0},{\overline {X}}_{1},\cdots \right)}
defined sequentially by the equations
with a collection
W
n
{\displaystyle W_{n}}
of independent standard Gaussian random variables, a positive parameter σ, some functions
a
,
b
,
c
:
R
→
R
,
{\displaystyle a,b,c:\mathbf {R} \to \mathbf {R} ,}
and some standard Gaussian initial random state
X
¯
0
{\displaystyle {\overline {X}}_{0}}
. We let
η
n
{\displaystyle \eta _{n}}
be the probability distribution of the random state
X
¯
n
{\displaystyle {\overline {X}}_{n}}
; that is, for any bounded measurable function f, we have
E
(
f
(
X
¯
n
)
)
=
∫
R
f
(
x
)
η
n
(
d
x
)
,
{\displaystyle E\left(f({\overline {X}}_{n})\right)=\int _{\mathbf {R} }f(x)\eta _{n}(dx),}
The mean field particle interpretation of this model is defined by the Markov chain
ξ
n
(
N
)
=
(
ξ
n
(
N
,
1
)
,
⋯
,
ξ
n
(
N
,
N
)
)
{\displaystyle \xi _{n}^{(N)}=\left(\xi _{n}^{(N,1)},\cdots ,\xi _{n}^{(N,N)}\right)}
on the product space
R
N
{\displaystyle \mathbf {R} ^{N}}
by
ξ
n
+
1
(
N
,
i
)
=
(
1
N
∑
j
=
1
N
a
(
ξ
n
(
N
,
i
)
)
)
b
(
ξ
n
(
N
,
i
)
)
+
c
(
ξ
n
(
N
,
i
)
)
+
σ
W
n
i
1
⩽
i
⩽
N
{\displaystyle \xi _{n+1}^{(N,i)}=\left({\frac {1}{N}}\sum _{j=1}^{N}a\left(\xi _{n}^{(N,i)}\right)\right)b\left(\xi _{n}^{(N,i)}\right)+c\left(\xi _{n}^{(N,i)}\right)+\sigma W_{n}^{i}\qquad 1\leqslant i\leqslant N}
The mean field continuous time model associated with these nonlinear diffusions is the (interacting) diffusion process
ξ
t
(
N
)
=
(
ξ
t
(
N
,
i
)
)
1
⩽
i
⩽
N
{\displaystyle \xi _{t}^{(N)}=\left(\xi _{t}^{(N,i)}\right)_{1\leqslant i\leqslant N}}
on the product space
R
N
{\displaystyle \mathbf {R} ^{N}}
defined by
d
ξ
t
(
N
,
i
)
=
(
1
N
∑
j
=
1
N
a
(
ξ
t
(
N
,
i
)
)
)
b
(
ξ
t
(
N
,
i
)
)
+
σ
d
W
¯
t
i
1
⩽
i
⩽
N
{\displaystyle d\xi _{t}^{(N,i)}=\left({\frac {1}{N}}\sum _{j=1}^{N}a\left(\xi _{t}^{(N,i)}\right)\right)b\left(\xi _{t}^{(N,i)}\right)+\sigma d{\overline {W}}_{t}^{i}\qquad 1\leqslant i\leqslant N}
with
η
t
=
Law
(
X
¯
t
)
,
{\displaystyle \eta _{t}={\text{Law}}\left({\overline {X}}_{t}\right),}
and the empirical measure
η
t
N
=
1
N
∑
j
=
1
N
δ
ξ
t
(
N
,
i
)
{\displaystyle \eta _{t}^{N}={\frac {1}{N}}\sum _{j=1}^{N}\delta _{\xi _{t}^{(N,i)}}}
Kolokoltsov, Vassili (2010). Nonlinear Markov processes. Cambridge Univ. Press. p. 375.
Del Moral, Pierre (2013). Mean field simulation for Monte Carlo integration. Monographs on Statistics & Applied Probability. Vol. 126. ISBN 9781466504059. 9781466504059
Del Moral, Pierre (2004). Feynman-Kac formulae. Genealogical and interacting particle approximations. Probability and its Applications. Springer. p. 575. ISBN 9780387202686. Series: Probability and Applications 9780387202686
Del Moral, Pierre; Miclo, Laurent (2000). "Branching and Interacting Particle Systems Approximations of Feynman-Kac Formulae with Applications to Non-Linear Filtering". Séminaire de Probabilités XXXIV (PDF). Lecture Notes in Mathematics. Vol. 1729. pp. 1–145. doi:10.1007/bfb0103798. ISBN 978-3-540-67314-9. 978-3-540-67314-9
Kolokoltsov, Vassili (2010). Nonlinear Markov processes. Cambridge Univ. Press. p. 375.
Del Moral, Pierre (2013). Mean field simulation for Monte Carlo integration. Monographs on Statistics & Applied Probability. Vol. 126. ISBN 9781466504059. 9781466504059
McKean, Henry, P. (1967). "Propagation of chaos for a class of non-linear parabolic equations". Lecture Series in Differential Equations, Catholic Univ. 7: 41–57.{{cite journal}}: CS1 maint: multiple names: authors list (link) /wiki/Template:Cite_journal
Méléard, Sylvie; Roelly, Sylvie (1987). "A propagation of chaos result for a system of particles with moderate interaction". Stoch. Proc. And Appl. 26: 317–332. doi:10.1016/0304-4149(87)90184-0. /wiki/Sylvie_M%C3%A9l%C3%A9ard
Sznitman, Alain-Sol (1991). Topics in propagation of chaos. Springer, Berlin. pp. 164–251. Saint-Flour Probability Summer School, 1989 /wiki/Alain-Sol_Sznitman
Kac, Mark (1976). Probability and Related Topics in Physical Sciences. Topics in Physical Sciences. American Mathematical Society, Providence, Rhode Island.
McKean, Henry, P. (1967). "Propagation of chaos for a class of non-linear parabolic equations". Lecture Series in Differential Equations, Catholic Univ. 7: 41–57.{{cite journal}}: CS1 maint: multiple names: authors list (link) /wiki/Template:Cite_journal
McKean, Henry, P. (1966). "A class of Markov processes associated with nonlinear parabolic equations". Proc. Natl. Acad. Sci. USA. 56 (6): 1907–1911. Bibcode:1966PNAS...56.1907M. doi:10.1073/pnas.56.6.1907. PMC 220210. PMID 16591437.{{cite journal}}: CS1 maint: multiple names: authors list (link) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC220210
Braun, Werner; Hepp, Klaus (1977). "The Vlasov dynamics and its fluctuations in the 1 limit of interacting classical particles". Communications in Mathematical Physics. 56 (2): 101–113. Bibcode:1977CMaPh..56..101B. doi:10.1007/bf01611497. S2CID 55238868. http://projecteuclid.org/euclid.cmp/1103901139
Oelschläger, Karl (1984). "A martingale approach to the law of large numbers for weakly interacting stochastic processes". Ann. Probab. 12 (2): 458–479. doi:10.1214/aop/1176993301. https://doi.org/10.1214%2Faop%2F1176993301
Oelschläger, Karl (1989). "On the derivation of reaction-diffusion equations as limit of dynamics of systems of moderately interacting stochastic processes". Prob. Th. Rel. Fields. 82 (4): 565–586. doi:10.1007/BF00341284. S2CID 115773110. https://doi.org/10.1007%2FBF00341284
Oelschläger, Karl (1990). "Large systems of interacting particles and porous medium equation". J. Differential Equations. 88 (2): 294–346. Bibcode:1990JDE....88..294O. doi:10.1016/0022-0396(90)90101-t. https://doi.org/10.1016%2F0022-0396%2890%2990101-t
Ben Arous, Gérard; Brunaud, Marc (1990). "Méthode de Laplace: Etude variationnelle des fluctuations de diffusions de type "champ moyen"". Stochastics. 31: 79–144. doi:10.1080/03610919008833649. /wiki/Doi_(identifier)
Dawson, Donald; Vaillancourt, Jean (1995). "Stochastic McKean-Vlasov equations". Nonlinear Differential Equations and Applications. 2 (2): 199–229. doi:10.1007/bf01295311. S2CID 121652411. /wiki/Doi_(identifier)
Dawson, Donald; Gartner, Jurgen (1987). "Large deviations from the McKean-Vlasov limit for weakly interacting diffusions". Stochastics. 20 (4): 247–308. doi:10.1080/17442508708833446. S2CID 122536900. /wiki/Doi_(identifier)
Gartner, Jurgen (1988). "J. GÄRTNER, On the McKean-Vlasov limit for interacting diffusions". Math. Nachr. 137: 197–248. doi:10.1002/mana.19881370116. /wiki/Doi_(identifier)
Léonard, Christian (1986). "Une loi des grands nombres pour des systèmes de diffusions avec interaction et à coefficients non bornés". Annales de l'Institut Henri Poincaré. 22: 237–262.
Méléard, Sylvie; Roelly, Sylvie (1987). "A propagation of chaos result for a system of particles with moderate interaction". Stoch. Proc. And Appl. 26: 317–332. doi:10.1016/0304-4149(87)90184-0. /wiki/Sylvie_M%C3%A9l%C3%A9ard
Sznitman, Alain-Sol (1991). Topics in propagation of chaos. Springer, Berlin. pp. 164–251. Saint-Flour Probability Summer School, 1989 /wiki/Alain-Sol_Sznitman
Sznitman, Alain-Sol (1984). "Nonlinear reflecting diffusion process, and the propagation of chaos and fluctuations associated". J. Funct. Anal. 36 (3): 311–336. doi:10.1016/0022-1236(84)90080-6. /wiki/Doi_(identifier)
Tanaka, Hiroshi (1984). "Limit Theorems for Certain Diffusion Processes with Interaction". Stochastic Analysis, Proceedings of the Taniguchi International Symposium on Stochastic Analysis. North-Holland Mathematical Library. Vol. 32. pp. 469–488. doi:10.1016/S0924-6509(08)70405-7. ISBN 978-0-444-87588-4. 978-0-444-87588-4
Grunbaum., F. Alberto (1971). "Propagation of chaos for the Boltzmann equation". Archive for Rational Mechanics and Analysis. 42 (5): 323–345. Bibcode:1971ArRMA..42..323G. doi:10.1007/BF00250440. S2CID 118165282. /wiki/Bibcode_(identifier)
Shiga, Tokuzo; Tanaka, Hiroshi (1985). "Central limit theorem for a system of Markovian particles with mean field interactions". Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete. 69 (3): 439–459. doi:10.1007/BF00532743. S2CID 121905550. https://doi.org/10.1007%2FBF00532743
Graham, Carl (1992). "Non linear diffusions with jumps". Ann. I.H.P. 28 (3): 393–402.
Méléard, Sylvie (1996). "Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models". Probabilistic models for nonlinear partial differential equations (Montecatini Terme, 1995). Lecture Notes in Mathematics. Vol. 1627. pp. 42–95. doi:10.1007/bfb0093177. ISBN 978-3-540-61397-8. 978-3-540-61397-8
Graham, Carl; Méléard, Sylvie (1997). "Stochastic particle approximations for generalized Boltzmann models and convergence estimates". Annals of Probability. 25 (1): 115–132. doi:10.1214/aop/1024404281. /wiki/Sylvie_M%C3%A9l%C3%A9ard
Herman, Kahn; Harris, Theodore, E. (1951). "Estimation of particle transmission by random sampling" (PDF). Natl. Bur. Stand. Appl. Math. Ser. 12: 27–30.{{cite journal}}: CS1 maint: multiple names: authors list (link) https://dornsifecms.usc.edu/assets/sites/520/docs/kahnharris.pdf
Turing, Alan M. (October 1950). "Computing machinery and intelligence". Mind. LIX (238): 433–460. doi:10.1093/mind/LIX.236.433. /wiki/Doi_(identifier)
Barricelli, Nils Aall (1954). "Esempi numerici di processi di evoluzione". Methodos: 45–68. /wiki/Nils_Aall_Barricelli
Barricelli, Nils Aall (1957). "Symbiogenetic evolution processes realized by artificial methods". Methodos: 143–182. /wiki/Nils_Aall_Barricelli
Fraser, Alex (1957). "Simulation of genetic systems by automatic digital computers. I. Introduction". Aust. J. Biol. Sci. 10: 484–491. doi:10.1071/BI9570484. /wiki/Alex_Fraser_(scientist)
Del Moral, Pierre (2004). Feynman-Kac formulae. Genealogical and interacting particle approximations. Probability and its Applications. Springer. p. 575. ISBN 9780387202686. Series: Probability and Applications 9780387202686
Del Moral, Pierre; Miclo, Laurent (2000). "Branching and Interacting Particle Systems Approximations of Feynman-Kac Formulae with Applications to Non-Linear Filtering". Séminaire de Probabilités XXXIV (PDF). Lecture Notes in Mathematics. Vol. 1729. pp. 1–145. doi:10.1007/bfb0103798. ISBN 978-3-540-67314-9. 978-3-540-67314-9
Del Moral, Pierre; Miclo, Laurent (2000). "A Moran particle system approximation of Feynman-Kac formulae". Stochastic Processes and Their Applications. 86 (2): 193–216. doi:10.1016/S0304-4149(99)00094-0. /wiki/Doi_(identifier)
Del Moral, Pierre (2003). "Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman-Kac semigroups". ESAIM Probability & Statistics. 7: 171–208. doi:10.1051/ps:2003001. http://journals.cambridge.org/download.php?file=%2FPSS%2FPSS7%2FS1292810003000016a.pdf&code=a0dbaa7ffca871126dc05fe2f918880a
Assaraf, Roland; Caffarel, Michel; Khelif, Anatole (2000). "Diffusion Monte Carlo Methods with a fixed number of walkers" (PDF). Phys. Rev. E. 61 (4): 4566–4575. Bibcode:2000PhRvE..61.4566A. doi:10.1103/physreve.61.4566. PMID 11088257. Archived from the original (PDF) on 2014-11-07. https://web.archive.org/web/20141107015724/http://qmcchem.ups-tlse.fr/files/caffarel/31.pdf
Caffarel, Michel; Ceperley, David; Kalos, Malvin (1993). "Comment on Feynman-Kac Path-Integral Calculation of the Ground-State Energies of Atoms". Phys. Rev. Lett. 71 (13): 2159. Bibcode:1993PhRvL..71.2159C. doi:10.1103/physrevlett.71.2159. PMID 10054598. /wiki/Bibcode_(identifier)
Hetherington, Jack, H. (1984). "Observations on the statistical iteration of matrices". Phys. Rev. A. 30 (2713): 2713–2719. Bibcode:1984PhRvA..30.2713H. doi:10.1103/PhysRevA.30.2713.{{cite journal}}: CS1 maint: multiple names: authors list (link) /wiki/Bibcode_(identifier)
Fermi, Enrique; Richtmyer, Robert, D. (1948). "Note on census-taking in Monte Carlo calculations" (PDF). LAM. 805 (A). Declassified report Los Alamos Archive{{cite journal}}: CS1 maint: multiple names: authors list (link) http://scienze-como.uninsubria.it/bressanini/montecarlo-history/fermi-1948.pdf
Hetherington, Jack, H. (1984). "Observations on the statistical iteration of matrices". Phys. Rev. A. 30 (2713): 2713–2719. Bibcode:1984PhRvA..30.2713H. doi:10.1103/PhysRevA.30.2713.{{cite journal}}: CS1 maint: multiple names: authors list (link) /wiki/Bibcode_(identifier)
Rosenbluth, Marshall, N.; Rosenbluth, Arianna, W. (1955). "Monte-Carlo calculations of the average extension of macromolecular chains". J. Chem. Phys. 23 (2): 356–359. Bibcode:1955JChPh..23..356R. doi:10.1063/1.1741967. S2CID 89611599.{{cite journal}}: CS1 maint: multiple names: authors list (link) https://doi.org/10.1063%2F1.1741967
Gordon, N. J.; Salmond, D. J.; Smith, A. F. M. (1993). "Novel approach to nonlinear/non-Gaussian Bayesian state estimation". IEE Proceedings F - Radar and Signal Processing. 140 (2): 107–113. doi:10.1049/ip-f-2.1993.0015. Archived from the original on September 5, 2016. Retrieved 2009-09-19. https://web.archive.org/web/20160905002857/http://ieeexplore.ieee.org/document/210672/?
Kitagawa, G. (1996). "Monte carlo filter and smoother for non-Gaussian nonlinear state space models". Journal of Computational and Graphical Statistics. 5 (1): 1–25. doi:10.2307/1390750. JSTOR 1390750. /wiki/Doi_(identifier)
Carvalho, Himilcon; Del Moral, Pierre; Monin, André; Salut, Gérard (July 1997). "Optimal Non-linear Filtering in GPS/INS Integration" (PDF). IEEE Transactions on Aerospace and Electronic Systems. 33 (3): 835. Bibcode:1997ITAES..33..835C. doi:10.1109/7.599254. S2CID 27966240. Archived from the original (PDF) on 2022-11-10. Retrieved 2014-09-03. https://web.archive.org/web/20221110053359/https://homepages.laas.fr/monin/Version_anglaise/Publications_files/GPS.pdf
Del Moral, Pierre (1996). "Non Linear Filtering: Interacting Particle Solution" (PDF). Markov Processes and Related Fields. 2 (4): 555–580. Archived from the original (PDF) on 2016-03-04. Retrieved 2014-08-29. https://web.archive.org/web/20160304052857/http://web.maths.unsw.edu.au/~peterdel-moral/mprfs.pdf
P. Del Moral, G. Rigal, and G. Salut. Estimation and nonlinear optimal control : An unified framework for particle solutions
LAAS-CNRS, Toulouse, Research Report no. 91137, DRET-DIGILOG- LAAS/CNRS contract, April (1991).
P. Del Moral, G. Rigal, and G. Salut. Nonlinear and non Gaussian particle filters applied to inertial platform repositioning.
LAAS-CNRS, Toulouse, Research Report no. 92207, STCAN/DIGILOG-LAAS/CNRS Convention STCAN no. A.91.77.013, (94p.) September (1991).
P. Del Moral, G. Rigal, and G. Salut. Estimation and nonlinear optimal control : Particle resolution in filtering and estimation. Experimental results.
Convention DRET no. 89.34.553.00.470.75.01, Research report no.2 (54p.), January (1992).
P. Del Moral, G. Rigal, and G. Salut. Estimation and nonlinear optimal control : Particle resolution in filtering and estimation. Theoretical results
Convention DRET no. 89.34.553.00.470.75.01, Research report no.3 (123p.), October (1992).
P. Del Moral, J.-Ch. Noyer, G. Rigal, and G. Salut. Particle filters in radar signal processing : detection, estimation and air targets recognition.
LAAS-CNRS, Toulouse, Research report no. 92495, December (1992).
P. Del Moral, G. Rigal, and G. Salut. Estimation and nonlinear optimal control : Particle resolution in filtering and estimation.
Studies on: Filtering, optimal control, and maximum likelihood estimation. Convention DRET no. 89.34.553.00.470.75.01. Research report no.4 (210p.), January (1993).
Del Moral, Pierre (1996). "Non Linear Filtering: Interacting Particle Solution" (PDF). Markov Processes and Related Fields. 2 (4): 555–580. Archived from the original (PDF) on 2016-03-04. Retrieved 2014-08-29. https://web.archive.org/web/20160304052857/http://web.maths.unsw.edu.au/~peterdel-moral/mprfs.pdf
Del Moral, Pierre (1998). "Measure Valued Processes and Interacting Particle Systems. Application to Non Linear Filtering Problems". Annals of Applied Probability. 8 (2) (Publications du Laboratoire de Statistique et Probabilités, 96-15 (1996) ed.): 438–495. doi:10.1214/aoap/1028903535. http://projecteuclid.org/download/pdf_1/euclid.aoap/1028903535
Crisan, Dan; Gaines, Jessica; Lyons, Terry (1998). "Convergence of a branching particle method to the solution of the Zakai". SIAM Journal on Applied Mathematics. 58 (5): 1568–1590. doi:10.1137/s0036139996307371. S2CID 39982562. /wiki/Doi_(identifier)
Crisan, Dan; Lyons, Terry (1997). "Nonlinear filtering and measure-valued processes". Probability Theory and Related Fields. 109 (2): 217–244. doi:10.1007/s004400050131. S2CID 119809371. https://doi.org/10.1007%2Fs004400050131
Crisan, Dan; Lyons, Terry (1999). "A particle approximation of the solution of the Kushner–Stratonovitch equation". Probability Theory and Related Fields. 115 (4): 549–578. doi:10.1007/s004400050249. S2CID 117725141. https://doi.org/10.1007%2Fs004400050249
Crisan, Dan; Del Moral, Pierre; Lyons, Terry (1999). "Discrete filtering using branching and interacting particle systems" (PDF). Markov Processes and Related Fields. 5 (3): 293–318. http://web.maths.unsw.edu.au/~peterdel-moral/crisan98discrete.pdf
Del Moral, Pierre; Guionnet, Alice (2001). "On the stability of interacting processes with applications to filtering and genetic algorithms". Annales de l'Institut Henri Poincaré. 37 (2): 155–194. Bibcode:2001AIHPB..37..155D. doi:10.1016/s0246-0203(00)01064-5. http://web.maths.unsw.edu.au/~peterdel-moral/ihp.ps
Del Moral, Pierre; Guionnet, Alice (1999). "On the stability of Measure Valued Processes with Applications to filtering". C. R. Acad. Sci. Paris. 39 (1): 429–434.
Malrieu, Florent (2001). "Logarithmic Sobolev inequalities for some nonlinear PDE's". Stochastic Process. Appl. 95 (1): 109–132. doi:10.1016/s0304-4149(01)00095-3. S2CID 13915974. /wiki/Doi_(identifier)
Del Moral, Pierre (2013). Mean field simulation for Monte Carlo integration. Monographs on Statistics & Applied Probability. Vol. 126. ISBN 9781466504059. 9781466504059
Del Moral, Pierre (2004). Feynman-Kac formulae. Genealogical and interacting particle approximations. Probability and its Applications. Springer. p. 575. ISBN 9780387202686. Series: Probability and Applications 9780387202686
Del Moral, Pierre; Miclo, Laurent (2001). "Genealogies and Increasing Propagations of Chaos for Feynman-Kac and Genetic Models". Annals of Applied Probability. 11 (4): 1166–1198. http://web.maths.unsw.edu.au/~peterdel-moral/spc.ps
Del Moral, Pierre (2013). Mean field simulation for Monte Carlo integration. Monographs on Statistics & Applied Probability. Vol. 126. ISBN 9781466504059. 9781466504059
Del Moral, Pierre; Doucet, Arnaud; Singh, Sumeetpal, S. (2010). "A Backward Particle Interpretation of Feynman-Kac Formulae" (PDF). M2AN. 44 (5): 947–976. arXiv:0908.2556. doi:10.1051/m2an/2010048. S2CID 14758161.{{cite journal}}: CS1 maint: multiple names: authors list (link) http://hal.inria.fr/docs/00/42/13/56/PDF/RR-7019.pdf
Del Moral, Pierre; Doucet, Arnaud; Jasra, Ajay (2012). "On Adaptive Resampling Procedures for Sequential Monte Carlo Methods" (PDF). Bernoulli. 18 (1): 252–278. arXiv:1203.0464. doi:10.3150/10-bej335. S2CID 4506682. http://hal.inria.fr/docs/00/33/25/83/PDF/RR-6700.pdf
Vergé, Christelle; Dubarry, Cyrille; Del Moral, Pierre; Moulines, Eric (2013). "On parallel implementation of Sequential Monte Carlo methods: the island particle model". Statistics and Computing. 25 (2): 243–260. arXiv:1306.3911. Bibcode:2013arXiv1306.3911V. doi:10.1007/s11222-013-9429-x. S2CID 39379264. /wiki/ArXiv_(identifier)
Chopin, Nicolas; Jacob, Pierre, E.; Papaspiliopoulos, Omiros (2011). "SMC^2: an efficient algorithm for sequential analysis of state-space models". arXiv:1101.1528v3 [stat.CO].{{cite arXiv}}: CS1 maint: multiple names: authors list (link) /wiki/ArXiv_(identifier)
Andrieu, Christophe; Doucet, Arnaud; Holenstein, Roman (2010). "Particle Markov chain Monte Carlo methods". Journal of the Royal Statistical Society, Series B. 72 (3): 269–342. doi:10.1111/j.1467-9868.2009.00736.x. https://doi.org/10.1111%2Fj.1467-9868.2009.00736.x
Del Moral, Pierre; Patras, Frédéric; Kohn, Robert (2014). "On Feynman-Kac and particle Markov chain Monte Carlo models". arXiv:1404.5733 [math.PR]. /wiki/ArXiv_(identifier)
Oelschläger, Karl (1984). "A martingale approach to the law of large numbers for weakly interacting stochastic processes". Ann. Probab. 12 (2): 458–479. doi:10.1214/aop/1176993301. https://doi.org/10.1214%2Faop%2F1176993301
Oelschläger, Karl (1989). "On the derivation of reaction-diffusion equations as limit of dynamics of systems of moderately interacting stochastic processes". Prob. Th. Rel. Fields. 82 (4): 565–586. doi:10.1007/BF00341284. S2CID 115773110. https://doi.org/10.1007%2FBF00341284
Oelschläger, Karl (1990). "Large systems of interacting particles and porous medium equation". J. Differential Equations. 88 (2): 294–346. Bibcode:1990JDE....88..294O. doi:10.1016/0022-0396(90)90101-t. https://doi.org/10.1016%2F0022-0396%2890%2990101-t
Graham, Carl; Méléard, Sylvie (1997). "Stochastic particle approximations for generalized Boltzmann models and convergence estimates". Annals of Probability. 25 (1): 115–132. doi:10.1214/aop/1024404281. /wiki/Sylvie_M%C3%A9l%C3%A9ard
Cercignani, Carlo; Illner, Reinhard; Pulvirenti, Mario (1994). The Mathematical Theory of Dilute Gases. Springer.
Schrodinger, Erwin (1926). "An Undulatory Theory of the Mechanics of Atoms and Molecules". Physical Review. 28 (6): 1049–1070. Bibcode:1926PhRv...28.1049S. doi:10.1103/physrev.28.1049. /wiki/Bibcode_(identifier)
Del Moral, Pierre (2004). Feynman-Kac formulae. Genealogical and interacting particle approximations. Probability and its Applications. Springer. p. 575. ISBN 9780387202686. Series: Probability and Applications 9780387202686
Del Moral, Pierre (2003). "Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman-Kac semigroups". ESAIM Probability & Statistics. 7: 171–208. doi:10.1051/ps:2003001. http://journals.cambridge.org/download.php?file=%2FPSS%2FPSS7%2FS1292810003000016a.pdf&code=a0dbaa7ffca871126dc05fe2f918880a
Assaraf, Roland; Caffarel, Michel; Khelif, Anatole (2000). "Diffusion Monte Carlo Methods with a fixed number of walkers" (PDF). Phys. Rev. E. 61 (4): 4566–4575. Bibcode:2000PhRvE..61.4566A. doi:10.1103/physreve.61.4566. PMID 11088257. Archived from the original (PDF) on 2014-11-07. https://web.archive.org/web/20141107015724/http://qmcchem.ups-tlse.fr/files/caffarel/31.pdf
Caffarel, Michel; Ceperley, David; Kalos, Malvin (1993). "Comment on Feynman-Kac Path-Integral Calculation of the Ground-State Energies of Atoms". Phys. Rev. Lett. 71 (13): 2159. Bibcode:1993PhRvL..71.2159C. doi:10.1103/physrevlett.71.2159. PMID 10054598. /wiki/Bibcode_(identifier)
Hetherington, Jack, H. (1984). "Observations on the statistical iteration of matrices". Phys. Rev. A. 30 (2713): 2713–2719. Bibcode:1984PhRvA..30.2713H. doi:10.1103/PhysRevA.30.2713.{{cite journal}}: CS1 maint: multiple names: authors list (link) /wiki/Bibcode_(identifier)
Del Moral, Pierre; Doucet, Arnaud (2004). "Particle Motions in Absorbing Medium with Hard and Soft Obstacles". Stochastic Analysis and Applications. 22 (5): 1175–1207. doi:10.1081/SAP-200026444. S2CID 4494495. http://web.maths.unsw.edu.au/~peterdel-moral/obstacle.ps
Del Moral, Pierre (2013). Mean field simulation for Monte Carlo integration. Monographs on Statistics & Applied Probability. Vol. 126. ISBN 9781466504059. 9781466504059
Del Moral, Pierre; Doucet, Arnaud; Jasra, Ajay (2006). "Sequential Monte Carlo samplers" (PDF). Journal of the Royal Statistical Society, Series B (Statistical Methodology). 68 (3): 411–436. arXiv:cond-mat/0212648. doi:10.1111/j.1467-9868.2006.00553.x. S2CID 12074789. http://web.maths.unsw.edu.au/~peterdel-moral/smc_samplers_try.pdf
Lelièvre, Tony; Rousset, Mathias; Stoltz, Gabriel (2007). "Computation of free energy differences through nonequilibrium stochastic dynamics: the reaction coordinate case". J. Comput. Phys. 222 (2): 624–643. arXiv:cond-mat/0603426. Bibcode:2007JCoPh.222..624L. doi:10.1016/j.jcp.2006.08.003. S2CID 27265236. /wiki/ArXiv_(identifier)
Lelièvre, Tony; Rousset, Mathias; Stoltz, Gabriel (2010). "Free energy computations: A mathematical perspective". Imperial College Press: 472.
Del Moral, Pierre; Miclo, Laurent (2000). "Branching and Interacting Particle Systems Approximations of Feynman-Kac Formulae with Applications to Non-Linear Filtering". Séminaire de Probabilités XXXIV (PDF). Lecture Notes in Mathematics. Vol. 1729. pp. 1–145. doi:10.1007/bfb0103798. ISBN 978-3-540-67314-9. 978-3-540-67314-9
Caron, F.; Del Moral, P.; Pace, M.; Vo, B.-N. (2011). "On the Stability and the Approximation of Branching Distribution Flows, with Applications to Nonlinear Multiple Target Filtering". Stochastic Analysis and Applications. 29 (6): 951–997. arXiv:1009.1845. doi:10.1080/07362994.2011.598797. ISSN 0736-2994. S2CID 303252. /wiki/ArXiv_(identifier)
Dynkin, Eugène, B. (1994). An Introduction to Branching Measure-Valued Processes. CRM Monograph Series. p. 134. ISBN 978-0-8218-0269-4.{{cite book}}: CS1 maint: multiple names: authors list (link) 978-0-8218-0269-4
Zoia, Andrea; Dumonteil, Eric; Mazzolo, Alain (2012). "Discrete Feynman-Kac formulas for branching random walks". EPL. 98 (40012): 40012. arXiv:1202.2811. Bibcode:2012EL.....9840012Z. doi:10.1209/0295-5075/98/40012. S2CID 119125770. /wiki/ArXiv_(identifier)
Del Moral, Pierre (2013). Mean field simulation for Monte Carlo integration. Monographs on Statistics & Applied Probability. Vol. 126. ISBN 9781466504059. 9781466504059
Del Moral, Pierre (2004). Feynman-Kac formulae. Genealogical and interacting particle approximations. Probability and its Applications. Springer. p. 575. ISBN 9780387202686. Series: Probability and Applications 9780387202686
Caron, François; Del Moral, Pierre; Doucet, Arnaud; Pace, Michele (2011). "Particle approximations of a class of branching distribution flows arising in multi-target tracking" (PDF). SIAM J. Control Optim. 49 (4): 1766–1792. arXiv:1012.5360. doi:10.1137/100788987. S2CID 6899555. http://hal.archives-ouvertes.fr/docs/00/46/41/30/PDF/RR-7233.pdf
Pitman, Jim; Fitzsimmons, Patrick, J. (1999). "Kac's moment formula and the Feynman–Kac formula for additive functionals of a Markov process". Stochastic Processes and Their Applications. 79 (1): 117–134. doi:10.1016/S0304-4149(98)00081-7.{{cite journal}}: CS1 maint: multiple names: authors list (link) http://math.ucsd.edu/~pfitz/downloads/kac/kac.html
Arendt, Wolfgang; Batty, Charles, J.K. (1993). "Absorption semigroups and Dirichlet boundary conditions" (PDF). Math. Ann. 295: 427–448. doi:10.1007/bf01444895. S2CID 14021993.{{cite journal}}: CS1 maint: multiple names: authors list (link) https://www.uni-ulm.de/fileadmin/website_uni_ulm/mawi.inst.020/arendt/downloads/pubbib/short/1993-AreBat-AbsSmgDrcBndCnd.pdf
Lant, Timothy; Thieme, Horst (2007). "Perturbation of Transition Functions and a Feynman-Kac Formula for the Incorporation of Mortality". Positivity. 11 (2): 299–318. doi:10.1007/s11117-006-2044-8. S2CID 54520042. /wiki/Doi_(identifier)
Takeda, Masayoshi (2008). "Some Topics connected with Gaugeability for Feynman-Kac Functionals" (PDF). RIMS Kokyuroku Bessatsu. B6: 221–236. http://www.kurims.kyoto-u.ac.jp/~kenkyubu/bessatsu/open/B6/pdf/B6-18.pdf
Yaglom, Isaak (1947). "Certain limit theorems of the theory of branching processes". Dokl. Akad. Nauk SSSR. 56: 795–798.
Del Moral, Pierre (2013). Mean field simulation for Monte Carlo integration. Monographs on Statistics & Applied Probability. Vol. 126. ISBN 9781466504059. 9781466504059
Del Moral, Pierre (2004). Feynman-Kac formulae. Genealogical and interacting particle approximations. Probability and its Applications. Springer. p. 575. ISBN 9780387202686. Series: Probability and Applications 9780387202686
Del Moral, Pierre; Guionnet, Alice (2001). "On the stability of interacting processes with applications to filtering and genetic algorithms". Annales de l'Institut Henri Poincaré. 37 (2): 155–194. Bibcode:2001AIHPB..37..155D. doi:10.1016/s0246-0203(00)01064-5. http://web.maths.unsw.edu.au/~peterdel-moral/ihp.ps
Del Moral, Pierre; Guionnet, Alice (1999). "On the stability of Measure Valued Processes with Applications to filtering". C. R. Acad. Sci. Paris. 39 (1): 429–434.
Del Moral, Pierre; Doucet, Arnaud (2004). "Particle Motions in Absorbing Medium with Hard and Soft Obstacles". Stochastic Analysis and Applications. 22 (5): 1175–1207. doi:10.1081/SAP-200026444. S2CID 4494495. http://web.maths.unsw.edu.au/~peterdel-moral/obstacle.ps
Del Moral, Pierre; Miclo, Laurent (2002). "On the Stability of Non Linear Semigroup of Feynman-Kac Type" (PDF). Annales de la Faculté des Sciences de Toulouse. 11 (2): 135–175. doi:10.5802/afst.1021. http://archive.numdam.org/ARCHIVE/AFST/AFST_2002_6_11_2/AFST_2002_6_11_2_135_0/AFST_2002_6_11_2_135_0.pdf
Kallel, Leila; Naudts, Bart; Rogers, Alex (2001-05-08). Theoretical Aspects of Evolutionary Computing. Springer, Berlin, New York; Natural computing series. p. 497. ISBN 978-3540673965. 978-3540673965
Del Moral, Pierre; Kallel, Leila; Rowe, John (2001). "Modeling genetic algorithms with interacting particle systems". Revista de Matemática: Teoría y Aplicaciones. 8 (2): 19–77. CiteSeerX 10.1.1.87.7330. doi:10.15517/rmta.v8i2.201. /wiki/CiteSeerX_(identifier)
Del Moral, Pierre; Guionnet, Alice (2001). "On the stability of interacting processes with applications to filtering and genetic algorithms". Annales de l'Institut Henri Poincaré. 37 (2): 155–194. Bibcode:2001AIHPB..37..155D. doi:10.1016/S0246-0203(00)01064-5. /wiki/Bibcode_(identifier)
Aumann, Robert John (1964). "Markets with a continuum of traders". Econometrica. 32 (1–2): 39–50. doi:10.2307/1913732. JSTOR 1913732. /wiki/Doi_(identifier)
Jovanovic, Boyan; Rosenthal, Robert W. (1988). "Anonymous sequential games". Journal of Mathematical Economics. 17 (1): 77–87. doi:10.1016/0304-4068(88)90029-8. /wiki/Doi_(identifier)
Huang, Minyi.Y; Malhame, Roland P.; Caines, Peter E. (2006). "Large Population Stochastic Dynamic Games: Closed-Loop McKean–Vlasov Systems and the Nash Certainty Equivalence Principle". Communications in Information and Systems. 6 (3): 221–252. doi:10.4310/CIS.2006.v6.n3.a5. https://doi.org/10.4310%2FCIS.2006.v6.n3.a5
Maynard Smith, John (1982). Evolution and the Theory of Games. Cambridge University Press, Cambridge.
Kolokoltsov, Vassili; Li, Jiajie; Yang, Wei (2011). "Mean field games and nonlinear Markov processes". arXiv:1112.3744v2 [math.PR]. /wiki/ArXiv_(identifier)
Lasry, Jean Michel; Lions, Pierre Louis (2007). "Mean field games". Japanese J. Math. 2 (1): 229–260. doi:10.1007/s11537-007-0657-8. S2CID 1963678. https://basepub.dauphine.fr/handle/123456789/2263
Carmona, René; Fouque, Jean Pierre; Sun, Li-Hsien (2014). "Mean Field Games and Systemic Risk". Communications in Mathematical Sciences. arXiv:1308.2172. Bibcode:2013arXiv1308.2172C. /wiki/ArXiv_(identifier)
Budhiraja, Amarjit; Del Moral, Pierre; Rubenthaler, Sylvain (2013). "Discrete time Markovian agents interacting through a potential". ESAIM Probability & Statistics. 17: 614–634. arXiv:1106.3306. doi:10.1051/ps/2012014. S2CID 28058111. /wiki/ArXiv_(identifier)
Aumann, Robert (1964). "Markets with a continuum of traders" (PDF). Econometrica. 32 (1–2): 39–50. doi:10.2307/1913732. JSTOR 1913732. http://www.u.arizona.edu/~mwalker/501BReadings/Aumann1964.pdf
Del Moral, Pierre (2013). Mean field simulation for Monte Carlo integration. Monographs on Statistics & Applied Probability. Vol. 126. ISBN 9781466504059. 9781466504059
Del Moral, Pierre (2004). Feynman-Kac formulae. Genealogical and interacting particle approximations. Probability and its Applications. Springer. p. 575. ISBN 9780387202686. Series: Probability and Applications 9780387202686
Caron, François; Del Moral, Pierre; Doucet, Arnaud; Pace, Michele (2011). "Particle approximations of a class of branching distribution flows arising in multi-target tracking" (PDF). SIAM J. Control Optim. 49 (4): 1766–1792. arXiv:1012.5360. doi:10.1137/100788987. S2CID 6899555. http://hal.archives-ouvertes.fr/docs/00/46/41/30/PDF/RR-7233.pdf
Del Moral, Pierre; Lézaud, Pascal (2006). Branching and interacting particle interpretation of rare event probabilities (PDF) (stochastic Hybrid Systems: Theory and Safety Critical Applications, eds. H. Blom and J. Lygeros. ed.). Springer, Berlin. pp. 277–323. http://web.maths.unsw.edu.au/~peterdel-moral/Del-Moral-Lezaud-rare-events.pdf
Del Moral, Pierre (1996). "Non Linear Filtering: Interacting Particle Solution" (PDF). Markov Processes and Related Fields. 2 (4): 555–580. Archived from the original (PDF) on 2016-03-04. Retrieved 2014-08-29. https://web.archive.org/web/20160304052857/http://web.maths.unsw.edu.au/~peterdel-moral/mprfs.pdf
Crisan, Dan; Del Moral, Pierre; Lyons, Terry (1998). "Discrete Filtering Using Branching and Interacting Particle Systems" (PDF). Markov Processes and Related Fields. 5 (3): 293–318. http://web.maths.unsw.edu.au/~peterdel-moral/crisan98discrete.pdf
Crisan, Dan; Del Moral, Pierre; Lyons, Terry (1998). "Interacting Particle Systems Approximations of the Kushner Stratonovitch Equation" (PDF). Advances in Applied Probability. 31 (3): 819–838. doi:10.1239/aap/1029955206. hdl:10068/56073. S2CID 121888859. http://web.maths.unsw.edu.au/~peterdel-moral/ks-approx.pdf
Del Moral, Pierre (2013). Mean field simulation for Monte Carlo integration. Monographs on Statistics & Applied Probability. Vol. 126. ISBN 9781466504059. 9781466504059
Caron, François; Del Moral, Pierre; Doucet, Arnaud; Pace, Michele (2011). "Particle approximations of a class of branching distribution flows arising in multi-target tracking" (PDF). SIAM J. Control Optim. 49 (4): 1766–1792. arXiv:1012.5360. doi:10.1137/100788987. S2CID 6899555. http://hal.archives-ouvertes.fr/docs/00/46/41/30/PDF/RR-7233.pdf
Pace, Michele; Del Moral, Pierre (2013). "Mean-Field PHD Filters Based on Generalized Feynman-Kac Flow". IEEE Journal of Selected Topics in Signal Processing. 7 (3): 484–495. Bibcode:2013ISTSP...7..484P. doi:10.1109/JSTSP.2013.2250909. S2CID 15906417. /wiki/Bibcode_(identifier)
Del Moral, Pierre; Miclo, Laurent (2000). "Branching and Interacting Particle Systems Approximations of Feynman-Kac Formulae with Applications to Non-Linear Filtering". Séminaire de Probabilités XXXIV (PDF). Lecture Notes in Mathematics. Vol. 1729. pp. 1–145. doi:10.1007/bfb0103798. ISBN 978-3-540-67314-9. 978-3-540-67314-9
Del Moral, Pierre; Miclo, Laurent (2000). "A Moran particle system approximation of Feynman-Kac formulae". Stochastic Processes and Their Applications. 86 (2): 193–216. doi:10.1016/S0304-4149(99)00094-0. /wiki/Doi_(identifier)
Crisan, Dan; Del Moral, Pierre; Lyons, Terry (1998). "Interacting Particle Systems Approximations of the Kushner Stratonovitch Equation" (PDF). Advances in Applied Probability. 31 (3): 819–838. doi:10.1239/aap/1029955206. hdl:10068/56073. S2CID 121888859. http://web.maths.unsw.edu.au/~peterdel-moral/ks-approx.pdf
Cappe, O.; Moulines, E.; Ryden, T. (2005). Inference in Hidden Markov Models. Springer.
Liu, J. (2001). Monte Carlo strategies in Scientific Computing. Springer.
Doucet, A. (2001). de Freitas, J. F. G.; Gordon, J. (eds.). Sequential Monte Carlo Methods in Practice. Springer.
Del Moral, Pierre (1996). "Non Linear Filtering: Interacting Particle Solution" (PDF). Markov Processes and Related Fields. 2 (4): 555–580. Archived from the original (PDF) on 2016-03-04. Retrieved 2014-08-29. https://web.archive.org/web/20160304052857/http://web.maths.unsw.edu.au/~peterdel-moral/mprfs.pdf
Botev, Z. I.; Kroese, D. P. (2008). "Efficient Monte Carlo simulation via the generalized splitting method". Methodology and Computing in Applied Probability. 10 (4): 471–505. CiteSeerX 10.1.1.399.7912. doi:10.1007/s11009-008-9073-7. S2CID 1147040. /wiki/Dirk_Kroese
Del Moral, Pierre; Doucet, Arnaud; Jasra, Ajay (2006). "Sequential Monte Carlo samplers" (PDF). Journal of the Royal Statistical Society, Series B (Statistical Methodology). 68 (3): 411–436. arXiv:cond-mat/0212648. doi:10.1111/j.1467-9868.2006.00553.x. S2CID 12074789. http://web.maths.unsw.edu.au/~peterdel-moral/smc_samplers_try.pdf
Botev, Z. I.; Kroese, D. P. (2012). "Efficient Monte Carlo simulation via the generalized splitting method". Statistics and Computing. 22 (1): 1–16. doi:10.1007/s11222-010-9201-4. S2CID 14970946. /wiki/Doi_(identifier)
Cérou, Frédéric; Del Moral, Pierre; Furon, Teddy; Guyader, Arnaud (2012). "Sequential Monte Carlo for Rare event estimation" (PDF). Statistics and Computing. 22 (3): 795–808. doi:10.1007/s11222-011-9231-6. S2CID 16097360. https://hal.inria.fr/inria-00584352/file/cdfg.pdf
Del Moral, Pierre (2013). Mean field simulation for Monte Carlo integration. Monographs on Statistics & Applied Probability. Vol. 126. ISBN 9781466504059. 9781466504059
Del Moral, Pierre (2013). Mean field simulation for Monte Carlo integration. Monographs on Statistics & Applied Probability. Vol. 126. ISBN 9781466504059. 9781466504059
Del Moral, Pierre (2004). Feynman-Kac formulae. Genealogical and interacting particle approximations. Probability and its Applications. Springer. p. 575. ISBN 9780387202686. Series: Probability and Applications 9780387202686
Kolokoltsov, Vassili (2010). Nonlinear Markov processes. Cambridge Univ. Press. p. 375.
Del Moral, Pierre (2013). Mean field simulation for Monte Carlo integration. Monographs on Statistics & Applied Probability. Vol. 126. ISBN 9781466504059. 9781466504059
Del Moral, Pierre (2004). Feynman-Kac formulae. Genealogical and interacting particle approximations. Probability and its Applications. Springer. p. 575. ISBN 9780387202686. Series: Probability and Applications 9780387202686
Del Moral, Pierre (2013). Mean field simulation for Monte Carlo integration. Monographs on Statistics & Applied Probability. Vol. 126. ISBN 9781466504059. 9781466504059
Sznitman, Alain-Sol (1991). Topics in propagation of chaos. Springer, Berlin. pp. 164–251. Saint-Flour Probability Summer School, 1989 /wiki/Alain-Sol_Sznitman
Kolokoltsov, Vassili (2010). Nonlinear Markov processes. Cambridge Univ. Press. p. 375.
Del Moral, Pierre (2013). Mean field simulation for Monte Carlo integration. Monographs on Statistics & Applied Probability. Vol. 126. ISBN 9781466504059. 9781466504059
Graham, Carl (1992). "Non linear diffusions with jumps". Ann. I.H.P. 28 (3): 393–402.
Graham, Carl; Méléard, Sylvie (1997). "Stochastic particle approximations for generalized Boltzmann models and convergence estimates". Annals of Probability. 25 (1): 115–132. doi:10.1214/aop/1024404281. /wiki/Sylvie_M%C3%A9l%C3%A9ard