Geothermobarometry relies upon understanding the temperature and pressure of the formation of minerals within rocks. There are several methods of measuring the temperature or pressure of mineral formation or re-equilibration relying for example on chemical equilibrium between minerals or by measuring the chemical composition and/or the crystal-chemical state of order of individual minerals or by measuring the residual stresses on solid inclusions or densities in fluid inclusions.
"Classic" (thermodynamic) thermobarometry relies upon the attainment of thermodynamic equilibrium between mineral pairs/assemblages that vary their compositions as a function of temperature and pressure. The distribution of component elements between the mineral assemblages is then analysed using a variety of analytical techniques as for example electron microprobe (EM), scanning electron microscope (SEM), Mass Spectrometry (MS). There are numerous extra factors to consider such as oxygen fugacity and water activity (roughly, the same as concentration) that must be accounted for using the appropriate methodological and analytical approach (e.g. Mössbauer spectroscopy, micro-raman spectroscopy, infrared spectroscopy etc...)
Geobarometers are typically net-transfer reactions, which are sensitive to pressure but have little change with temperature, such as garnet-plagioclase-muscovite-biotite reaction that involves a significant volume reduction upon high pressure:
Fe
3
Al
2
Si
3
O
12
⏟
Fe-Al garnet
+
Ca
3
Al
2
Si
3
O
12
⏟
Ca-Al garnet
+
KAl
3
Si
3
O
10
(
OH
)
2
⏟
muscovite
↽
−
−
⇀
3
CaAl
2
Si
2
O
8
⏟
plagioclase
+
KFe
3
AlSi
3
O
10
(
OH
)
2
⏟
biotite
{\displaystyle {\mathsf {\underbrace {{\ce {Fe3Al2Si3O12}}} _{\text{Fe-Al garnet}}+\underbrace {{\ce {Ca3Al2Si3O12}}} _{\text{Ca-Al garnet}}+\underbrace {{\ce {KAl3Si3O10(OH)2}}} _{\text{muscovite}}\ {\ce {<=>}}\ \underbrace {{\ce {3CaAl2Si2O8}}} _{\text{plagioclase}}+\underbrace {{\ce {KFe3AlSi3O10(OH)2}}} _{\text{biotite}}}}}
Since mineral assemblages at equilibrium are dependent on pressures and temperatures, by measuring the composition of the coexisting minerals, together with using suitable activity models, the P-T conditions experienced by the rock can be determined.
Despite the usefulness of geothermobarometry, special attention should be paid to whether the mineral assemblages represent an equilibrium, any occurrence of retrograde equilibrium in the rock, and appropriateness of calibration of the results.
Elastic thermobarometry is a method of determining the equilibrium pressure and temperature attained by the host mineral and its inclusion on the rock history from the excess pressures exhibited by mineral inclusions trapped inside host minerals. Upon exhumation and cooling, contrasting compressibilities and thermal expansivities induce differential strains (volume mismatches) between a host crystal and its inclusions. These strains can be quantified in situ using Raman spectroscopy or X-ray diffraction. Knowing equations of state and elastic properties of minerals, elastic thermobarometry inverts measured strains to calculate the pressure-temperature conditions under which the stress state was uniform in the host and inclusion. These are commonly interpreted to represent the conditions of inclusion entrapment or the last elastic equilibration of the pair.
Data on the geothermometers and geobarometers is derived from both laboratory studies on synthetic (artificial) mineral assemblages and from natural systems for which other constraints are available.
For example, one of the best known and most widely applicable geothermometers is the garnet-biotite relationship where the relative proportions of Fe and Mg in garnet and biotite change with increasing temperature, so measurement of the compositions of these minerals to give the Fe-Mg distribution between them allows the temperature of crystallization to be calculated, given some assumptions.
In natural systems, the chemical reactions occur in open systems with unknown geological and chemical histories, and application of geothermobarometers relies on several assumptions that must hold in order for the laboratory data and natural compositions to relate in a valid fashion:
In natural systems elastic behaviour of minerals can be easily perturbed by high temperature re-equilibration, plastic or brittle deformation, leading to an irreversible change beyond the elastic regime that will prevent reconstructing the "elastic history" of the pair.
Note that the Fe-Mg exchange thermometers are empirical (laboratory tested and calibrated) as well as calculated based on a theoretical thermodynamic understanding of the components and phases involved. The Ti-in-biotite thermometer is solely empirical and not well understood thermodynamically.
Various mineral assemblages rely more upon pressure than temperature; for example reactions which involve a large volume change. At high pressure, specific minerals assume lower volumes (therefore density increases, as the mass does not change) - it is these minerals which are good indicators of paleo-pressure.
Powell, R.; Holland, T. J. B. (February 2008). "On thermobarometry". Journal of Metamorphic Geology. 26 (2): 155–179. Bibcode:2008JMetG..26..155P. doi:10.1111/j.1525-1314.2007.00756.x. ISSN 0263-4929. https://onlinelibrary.wiley.com/doi/10.1111/j.1525-1314.2007.00756.x
Powell, R.; Holland, T. J. B. (February 2008). "On thermobarometry". Journal of Metamorphic Geology. 26 (2): 155–179. Bibcode:2008JMetG..26..155P. doi:10.1111/j.1525-1314.2007.00756.x. ISSN 0263-4929. https://onlinelibrary.wiley.com/doi/10.1111/j.1525-1314.2007.00756.x
Goncalves, Philippe; Marquer, Didier; Oliot, Emilien; Durand, Cyril (2013), "Thermodynamic Modeling and Thermobarometry of Metasomatized Rocks", Metasomatism and the Chemical Transformation of Rock, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 53–91, doi:10.1007/978-3-642-28394-9_3, ISBN 978-3-642-28393-2, retrieved 2023-07-31 978-3-642-28393-2
Wood, B.J.; Holland, T.J.B.; Newton, R.C.; Kleppa, O.J. (September 1980). "Thermochemistry of jadeite—diopside pyroxenes". Geochimica et Cosmochimica Acta. 44 (9): 1363–1371. Bibcode:1980GeCoA..44.1363W. doi:10.1016/0016-7037(80)90095-2. https://linkinghub.elsevier.com/retrieve/pii/0016703780900952
Holland, Heinrich D.; Turekian, Karl K. (2004). Treatise on geochemistry (1st ed.). Amsterdam Boston: Elsevier/Pergamon. ISBN 978-0-08-043751-4. 978-0-08-043751-4
Treatise on Geochemistry. 2003-12-04. ISBN 978-0-08-043751-4. 978-0-08-043751-4
Ghose, S.; Ganguly, J. (1982), Saxena, Surendra K. (ed.), "Mg-Fe Order-Disorder in Ferromagnesian Silicates", Advances in Physical Geochemistry, vol. 2, New York, NY: Springer New York, pp. 3–99, doi:10.1007/978-1-4612-5683-0_1, ISBN 978-1-4612-5685-4, retrieved 2023-07-31 978-1-4612-5685-4
Kohn, Matthew J.; Mazzucchelli, Mattia L.; Alvaro, Matteo (2023-05-30). "Elastic Thermobarometry". Annual Review of Earth and Planetary Sciences. 51 (1): 331–366. Bibcode:2023AREPS..51..331K. doi:10.1146/annurev-earth-031621-112720. ISSN 0084-6597. S2CID 256443282. https://www.annualreviews.org/doi/10.1146/annurev-earth-031621-112720
Levresse, Gilles; Cervantes-de la Cruz, Karina Elizabeth; Aranda-Gómez, José Jorge; Dávalos-Elizondo, María Guadalupe; Jiménez-Sandoval, Sergio; Rodríguez-Melgarejo, Francisco; Alba-Aldave, Leticia Araceli (January 2016). "CO2 fluid inclusion barometry in mantle xenoliths from central Mexico: A detailed record of magma ascent". Journal of Volcanology and Geothermal Research. 310: 72–88. doi:10.1016/j.jvolgeores.2015.11.012. https://linkinghub.elsevier.com/retrieve/pii/S0377027315003868
Powell, Roger; Holland, Tim (1994). "Optimal geothermometry and geobarometry". American Mineralogist. 79: 120–133. http://www.minsocam.org/msa/collectors_corner/amtoc/toc1994.htm
Powell, R.; Holland, T. J. B. (February 2008). "On thermobarometry". Journal of Metamorphic Geology. 26 (2): 155–179. Bibcode:2008JMetG..26..155P. doi:10.1111/j.1525-1314.2007.00756.x. ISSN 0263-4929. https://onlinelibrary.wiley.com/doi/10.1111/j.1525-1314.2007.00756.x
Powell, R.; Holland, T. J. B. (February 2008). "On thermobarometry". Journal of Metamorphic Geology. 26 (2): 155–179. Bibcode:2008JMetG..26..155P. doi:10.1111/j.1525-1314.2007.00756.x. ISSN 0263-4929. https://onlinelibrary.wiley.com/doi/10.1111/j.1525-1314.2007.00756.x
Powell, R.; Holland, T. J. B. (February 2008). "On thermobarometry". Journal of Metamorphic Geology. 26 (2): 155–179. Bibcode:2008JMetG..26..155P. doi:10.1111/j.1525-1314.2007.00756.x. ISSN 0263-4929. https://onlinelibrary.wiley.com/doi/10.1111/j.1525-1314.2007.00756.x
Powell, R.; Holland, T. J. B. (February 2008). "On thermobarometry". Journal of Metamorphic Geology. 26 (2): 155–179. Bibcode:2008JMetG..26..155P. doi:10.1111/j.1525-1314.2007.00756.x. ISSN 0263-4929. https://onlinelibrary.wiley.com/doi/10.1111/j.1525-1314.2007.00756.x
Kohn, Matthew J.; Mazzucchelli, Mattia L.; Alvaro, Matteo (2023-05-30). "Elastic Thermobarometry". Annual Review of Earth and Planetary Sciences. 51 (1): 331–366. Bibcode:2023AREPS..51..331K. doi:10.1146/annurev-earth-031621-112720. ISSN 0084-6597. S2CID 256443282. https://www.annualreviews.org/doi/10.1146/annurev-earth-031621-112720
Moulas, Evangelos; Kostopoulos, Dimitrios; Podladchikov, Yury; Chatzitheodoridis, Elias; Schenker, Filippo L.; Zingerman, Konstantin M.; Pomonis, Panagiotis; Tajčmanová, Lucie (2020-12-15). "Calculating pressure with elastic geobarometry: A comparison of different elastic solutions with application to a calc-silicate gneiss from the Rhodope Metamorphic Province". Lithos. 378–379: 105803. Bibcode:2020Litho.37805803M. doi:10.1016/j.lithos.2020.105803. ISSN 0024-4937. S2CID 224846463. https://www.sciencedirect.com/science/article/pii/S0024493720304400
Mazzucchelli, M.L.; Burnley, P.; Angel, R.J.; Morganti, S.; Domeneghetti, M.C.; Nestola, F.; Alvaro, M. (2018). "Elastic geothermobarometry: Corrections for the geometry of the host-inclusion system". Geology. 46 (3): 231–234. Bibcode:2018Geo....46..231M. doi:10.1130/g39807.1. Retrieved 2023-08-01. https://pubs.geoscienceworld.org/gsa/geology/article/46/3/231/526077/Elastic-geothermobarometry-Corrections-for-the
Mazzucchelli, M. L.; Reali, A.; Morganti, S.; Angel, R. J.; Alvaro, M. (2019-12-15). "Elastic geobarometry for anisotropic inclusions in cubic hosts". Lithos. 350–351: 105218. Bibcode:2019Litho.35005218M. doi:10.1016/j.lithos.2019.105218. ISSN 0024-4937. https://doi.org/10.1016%2Fj.lithos.2019.105218
Murri, Mara; Mazzucchelli, Mattia L.; Campomenosi, Nicola; Korsakov, Andrey V.; Prencipe, Mauro; Mihailova, Boriana D.; Scambelluri, Marco; Angel, Ross J.; Alvaro, Matteo (2018-11-01). "Raman elastic geobarometry for anisotropic mineral inclusions". American Mineralogist. 103 (11): 1869–1872. doi:10.2138/am-2018-6625CCBY. hdl:11567/919890. ISSN 1945-3027. https://www.degruyter.com/document/doi/10.2138/am-2018-6625CCBY/html
http://www.geol.lsu.edu/henry/Research/biotite/TiInBiotiteGeothermometer.htm Archived 2018-04-04 at the Wayback Machine Ti-in biotite geothermometer, Henry et al. 2005 http://www.geol.lsu.edu/henry/Research/biotite/TiInBiotiteGeothermometer.htm
Lindsley & Andersen 1983 - A Two-pyroxene Thermometer; Journal of Geophysical Research, vol. 88
http://www.rpi.edu/~watsoe/research/Watson_etal_CMP06.pdf Crystallization thermometers for zircon and rutile, Watson et al. 2006; Contributions to mineralogy and petrology v. 151 http://www.rpi.edu/~watsoe/research/Watson_etal_CMP06.pdf
Kohn, M.J. and Spear, F.S. (1989): Am. Min. 74:77-84. (Pargasite component)
Kohn, M.J. and Spear, F.S. (1990): Am. Min. 75:89-96. (Tschermakite component)
Hammerstrom, J.M. and Zen, E.-an. (1986): Am. Min. 71:1297-1313.
Hollister, L.S., Grissom, G.C., Peters, E.K., Stowell, H.H. and Sisson, V.B.(1987): Am. Mineral. 72:231-239.
Johnson, and Rutherford (1989): Geology 17: 837-841.
Holland, T. J. B.; Powell, R. (2004-10-08). "An internally consistent thermodynamic data set for phases of petrological interest: AN INTERNALLY CONSISTENT THERMODYNAMIC DATA SET". Journal of Metamorphic Geology. 16 (3): 309–343. doi:10.1111/j.1525-1314.1998.00140.x. https://onlinelibrary.wiley.com/doi/10.1111/j.1525-1314.1998.00140.x
Powell, R; Holland, T.; Worley, B. (June 1998). "Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC". Journal of Metamorphic Geology. 16 (4): 577–588. Bibcode:1998JMetG..16..577P. doi:10.1111/j.1525-1314.1998.00157.x. ISSN 0263-4929. S2CID 129301254. https://onlinelibrary.wiley.com/doi/10.1111/j.1525-1314.1998.00157.x
Connolly, J. a. D. (1990-06-01). "Multivariable phase diagrams; an algorithm based on generalized thermodynamics". American Journal of Science. 290 (6): 666–718. Bibcode:1990AmJS..290..666C. doi:10.2475/ajs.290.6.666. https://ajs.scholasticahq.com/article/60533
Connolly, J.A.D. (July 2005). "Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation". Earth and Planetary Science Letters. 236 (1–2): 524–541. Bibcode:2005E&PSL.236..524C. doi:10.1016/j.epsl.2005.04.033. https://linkinghub.elsevier.com/retrieve/pii/S0012821X05002839
Connolly, James A. D.; Galvez, Matthieu E. (2018-11-01). "Electrolytic fluid speciation by Gibbs energy minimization and implications for subduction zone mass transfer". Earth and Planetary Science Letters. 501: 90–102. Bibcode:2018E&PSL.501...90C. doi:10.1016/j.epsl.2018.08.024. ISSN 0012-821X. S2CID 134999977. https://www.sciencedirect.com/science/article/pii/S0012821X18304904
Connolly, J. A. D.; Petrini, K. (September 2002). "An automated strategy for calculation of phase diagram sections and retrieval of rock properties as a function of physical conditions". Journal of Metamorphic Geology. 20 (7): 697–708. Bibcode:2002JMetG..20..697C. doi:10.1046/j.1525-1314.2002.00398.x. ISSN 0263-4929. S2CID 73603565. http://doi.wiley.com/10.1046/j.1525-1314.2002.00398.x
Connolly, J. A. D.; Kerrick, D. M. (1987-01-01). "An algorithm and computer program for calculating composition phase diagrams". Calphad. 11 (1): 1–55. doi:10.1016/0364-5916(87)90018-6. ISSN 0364-5916. https://dx.doi.org/10.1016/0364-5916%2887%2990018-6
Lanari, Pierre; Vidal, Olivier; De Andrade, Vincent; Dubacq, Benoît; Lewin, Eric; Grosch, Eugene G.; Schwartz, Stéphane (2014-01-01). "XMapTools: A MATLAB©-based program for electron microprobe X-ray image processing and geothermobarometry". Computers & Geosciences. 62: 227–240. doi:10.1016/j.cageo.2013.08.010. ISSN 0098-3004. https://www.sciencedirect.com/science/article/pii/S0098300413002379
Mazzucchelli, Mattia Luca; Angel, Ross John; Alvaro, Matteo (2021). "EntraPT: An online platform for elastic geothermobarometry". American Mineralogist. 106 (5): 830–837. Bibcode:2021AmMin.106..830M. doi:10.2138/am-2021-7693ccbyncnd. Retrieved 2023-08-01. https://pubs.geoscienceworld.org/msa/ammin/article/106/5/830/596394/EntraPT-An-online-platform-for-elastic
Angel, Ross J.; Murri, Mara; Mihailova, Boriana; Alvaro, Matteo (2019-02-01). "Stress, strain and Raman shifts". Zeitschrift für Kristallographie - Crystalline Materials. 234 (2): 129–140. doi:10.1515/zkri-2018-2112. ISSN 2196-7105. S2CID 105926659. https://www.degruyter.com/document/doi/10.1515/zkri-2018-2112/html
Angel, Ross J.; Alvaro, Matteo; Gonzalez-Platas, Javier (2014-05-01). "EosFit7c and a Fortran module (library) for equation of state calculations". Zeitschrift für Kristallographie - Crystalline Materials (in German). 229 (5): 405–419. doi:10.1515/zkri-2013-1711. ISSN 2196-7105. S2CID 56434995. https://www.degruyter.com/document/doi/10.1515/zkri-2013-1711/html
Gonzalez-Platas, J.; Alvaro, M.; Nestola, F.; Angel, R. (2016-08-01). "EosFit7-GUI: a new graphical user interface for equation of state calculations, analyses and teaching". Journal of Applied Crystallography. 49 (4): 1377–1382. doi:10.1107/S1600576716008050. ISSN 1600-5767. http://scripts.iucr.org/cgi-bin/paper?kc5039
Angel, Ross J.; Alvaro, Matteo; Gonzalez-Platas, Javier (2014-05-01). "EosFit7c and a Fortran module (library) for equation of state calculations". Zeitschrift für Kristallographie - Crystalline Materials (in German). 229 (5): 405–419. doi:10.1515/zkri-2013-1711. ISSN 2196-7105. S2CID 56434995. https://www.degruyter.com/document/doi/10.1515/zkri-2013-1711/html
Angel, Ross J.; Mazzucchelli, Mattia L.; Alvaro, Matteo; Nestola, Fabrizio (2017-09-01). "EosFit-Pinc: A simple GUI for host-inclusion elastic thermobarometry". American Mineralogist. 102 (9): 1957–1960. Bibcode:2017AmMin.102.1957A. doi:10.2138/am-2017-6190. ISSN 1945-3027. https://www.degruyter.com/document/doi/10.2138/am-2017-6190/html
Wieser, Penny; Petrelli, Maurizio; Lubbers, Jordan; Weiser, Eric; Özaydın, Sinan; Kent, Adam J.; Till, Christy (2022-11-09). "Thermobar: An Open-Source Python3 Tool for Thermobarometry and Hygrometry". Volcanica. 5 (2): 249–284. doi:10.30909/vol.05.02.349384. https://www.jvolcanica.org/ojs/index.php/volcanica/article/view/161