A subgroup, B, of an abelian group, A, is called p-basic, for a fixed prime number, p, if the following conditions hold:
Conditions 1–3 imply that the subgroup, B, is Hausdorff in the p-adic topology of B, which moreover coincides with the topology induced from A, and that B is dense in A. Picking a generator in each cyclic direct summand of B creates a p-basis of B, which is analogous to a basis of a vector space or a free abelian group.
Every abelian group, A, contains p-basic subgroups for each p, and any 2 p-basic subgroups of A are isomorphic. Abelian groups that contain a unique p-basic subgroup have been completely characterized. For the case of p-groups they are either divisible or bounded; i.e., have bounded exponent. In general, the isomorphism class of the quotient, A/B by a basic subgroup, B, may depend on B.