Consider an irreducible discrete-time Markov chain on a countable state space S {\displaystyle S} having a transition probability matrix P {\displaystyle P} with elements p i j {\displaystyle p_{ij}} for pairs i {\displaystyle i} , j {\displaystyle j} in S {\displaystyle S} . Foster's theorem states that the Markov chain is positive recurrent if and only if there exists a Lyapunov function V : S → R {\displaystyle V:S\to \mathbb {R} } , such that V ( i ) ≥ 0 ∀ i ∈ S {\displaystyle V(i)\geq 0{\text{ }}\forall {\text{ }}i\in S} and
for some finite set F {\displaystyle F} and strictly positive ε {\displaystyle \varepsilon } .2
Foster, F. G. (1953). "On the Stochastic Matrices Associated with Certain Queuing Processes". The Annals of Mathematical Statistics. 24 (3): 355–360. doi:10.1214/aoms/1177728976. JSTOR 2236286. https://doi.org/10.1214%2Faoms%2F1177728976 ↩
Brémaud, P. (1999). "Lyapunov Functions and Martingales". Markov Chains. pp. 167. doi:10.1007/978-1-4757-3124-8_5. ISBN 978-1-4419-3131-3. 978-1-4419-3131-3 ↩