Source:4
Let f ( x ) {\displaystyle f(x)} be any probability density function and let μ {\displaystyle \mu } and σ > 0 {\displaystyle \sigma >0} be any given constants. Then the function
g ( x | μ , σ ) = 1 σ f ( x − μ σ ) {\displaystyle g(x|\mu ,\sigma )={\frac {1}{\sigma }}f\left({\frac {x-\mu }{\sigma }}\right)}
is a probability density function.
The location family is then defined as follows:
Let f ( x ) {\displaystyle f(x)} be any probability density function. Then the family of probability density functions F = { f ( x − μ ) : μ ∈ R } {\displaystyle {\mathcal {F}}=\{f(x-\mu ):\mu \in \mathbb {R} \}} is called the location family with standard probability density function f ( x ) {\displaystyle f(x)} , where μ {\displaystyle \mu } is called the location parameter for the family.
An alternative way of thinking of location families is through the concept of additive noise. If x 0 {\displaystyle x_{0}} is a constant and W is random noise with probability density f W ( w ) , {\displaystyle f_{W}(w),} then X = x 0 + W {\displaystyle X=x_{0}+W} has probability density f x 0 ( x ) = f W ( x − x 0 ) {\displaystyle f_{x_{0}}(x)=f_{W}(x-x_{0})} and its distribution is therefore part of a location family.
For the continuous univariate case, consider a probability density function f ( x | θ ) , x ∈ [ a , b ] ⊂ R {\displaystyle f(x|\theta ),x\in [a,b]\subset \mathbb {R} } , where θ {\displaystyle \theta } is a vector of parameters. A location parameter x 0 {\displaystyle x_{0}} can be added by defining:
it can be proved that g {\displaystyle g} is a p.d.f. by verifying if it respects the two conditions5 g ( x | θ , x 0 ) ≥ 0 {\displaystyle g(x|\theta ,x_{0})\geq 0} and ∫ − ∞ ∞ g ( x | θ , x 0 ) d x = 1 {\displaystyle \int _{-\infty }^{\infty }g(x|\theta ,x_{0})dx=1} . g {\displaystyle g} integrates to 1 because:
now making the variable change u = x − x 0 {\displaystyle u=x-x_{0}} and updating the integration interval accordingly yields:
because f ( x | θ ) {\displaystyle f(x|\theta )} is a p.d.f. by hypothesis. g ( x | θ , x 0 ) ≥ 0 {\displaystyle g(x|\theta ,x_{0})\geq 0} follows from g {\displaystyle g} sharing the same image of f {\displaystyle f} , which is a p.d.f. so its range is contained in [ 0 , 1 ] {\displaystyle [0,1]} .
Takeuchi, Kei (1971). "A Uniformly Asymptotically Efficient Estimator of a Location Parameter". Journal of the American Statistical Association. 66 (334): 292–301. doi:10.1080/01621459.1971.10482258. S2CID 120949417. /wiki/Doi_(identifier) ↩
Huber, Peter J. (1992). "Robust Estimation of a Location Parameter". Breakthroughs in Statistics. Springer Series in Statistics. Springer. pp. 492–518. doi:10.1007/978-1-4612-4380-9_35. ISBN 978-0-387-94039-7. 978-0-387-94039-7 ↩
Stone, Charles J. (1975). "Adaptive Maximum Likelihood Estimators of a Location Parameter". The Annals of Statistics. 3 (2): 267–284. doi:10.1214/aos/1176343056. https://doi.org/10.1214%2Faos%2F1176343056 ↩
Casella, George; Berger, Roger (2001). Statistical Inference (2nd ed.). Thomson Learning. p. 116. ISBN 978-0534243128. 978-0534243128 ↩
Ross, Sheldon (2010). Introduction to probability models. Amsterdam Boston: Academic Press. ISBN 978-0-12-375686-2. OCLC 444116127. 978-0-12-375686-2 ↩