The simplest such protocol is the 1-message protocol where Merlin sends Arthur a message, and then Arthur decides whether to accept or not by running a probabilistic polynomial time computation. (This is similar to the verifier-based definition of NP, the only difference being that Arthur is allowed to use randomness here.) Merlin does not have access to Arthur's coin tosses in this protocol, since it is a single-message protocol and Arthur tosses his coins only after receiving Merlin's message. This protocol is called MA. Informally, a language L is in MA if for all strings in the language, there is a polynomial sized proof that Merlin can send Arthur to convince him of this fact with high probability, and for all strings not in the language there is no proof that convinces Arthur with high probability.
Formally, the complexity class MA is the set of decision problems that can be decided in polynomial time by an Arthur–Merlin protocol where Merlin's only move precedes any computation by Arthur. In other words, a language L is in MA if there exists a polynomial-time deterministic Turing machine M and polynomials p, q such that for every input string x of length n = |x|,
The second condition can alternatively be written as
To compare this with the informal definition above, z is the purported proof from Merlin (whose size is bounded by a polynomial) and y is the random string that Arthur uses, which is also polynomially bounded.
The complexity class AM (or AM[2]) is the set of decision problems that can be decided in polynomial time by an Arthur–Merlin protocol with two messages. There is only one query/response pair: Arthur tosses some random coins and sends the outcome of all his coin tosses to Merlin, Merlin responds with a purported proof, and Arthur deterministically verifies the proof. In this protocol, Arthur is only allowed to send outcomes of coin tosses to Merlin, and in the final stage Arthur must decide whether to accept or reject using only his previously generated random coin flips and Merlin's message.
In other words, a language L is in AM if there exists a polynomial-time deterministic Turing machine M and polynomials p, q such that for every input string x of length n = |x|,
The second condition here can be rewritten as
As above, z is the alleged proof from Merlin (whose size is bounded by a polynomial) and y is the random string that Arthur uses, which is also polynomially bounded.
The complexity class AM[k] is the set of problems that can be decided in polynomial time, with k queries and responses. AM as defined above is AM[2]. AM[3] would start with one message from Merlin to Arthur, then a message from Arthur to Merlin and then finally a message from Merlin to Arthur. The last message should always be from Merlin to Arthur, since it never helps for Arthur to send a message to Merlin after deciding his answer.
For a proof, see Rafael Pass and Jean-Baptiste Jeannin (March 24, 2009). "Lecture 17: Arthur-Merlin games, Zero-knowledge proofs" (PDF). Retrieved June 23, 2010. http://www.cs.cornell.edu/courses/cs6810/2009sp/scribe/lecture17.pdf ↩
Impagliazzo, Russell; Wigderson, Avi (1997-05-04). P = BPP if E requires exponential circuits: derandomizing the XOR lemma. ACM. pp. 220–229. doi:10.1145/258533.258590. ISBN 0897918886. S2CID 18921599. 0897918886 ↩
"Symmetric Alternation captures BPP" (PDF). Ccs.neu.edu. Retrieved 2016-07-26. http://www.ccs.neu.edu/home/koods/papers/russell98symmetric.pdf ↩
Vereschchagin, N.K. (1992). "On the power of PP". [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference. pp. 138–143. doi:10.1109/sct.1992.215389. ISBN 081862955X. S2CID 195705029. 081862955X ↩
Vidick, Thomas; Watrous, John (2016). "Quantum Proofs". Foundations and Trends in Theoretical Computer Science. 11 (1–2): 1–215. arXiv:1610.01664. doi:10.1561/0400000068. ISSN 1551-305X. S2CID 54255188. /wiki/ArXiv_(identifier) ↩
"Course: Algebra and Computation". People.csail.mit.edu. Retrieved 2016-07-26. http://people.csail.mit.edu/madhu/FT98/course.html ↩