Any topography element that looks like a hill or a pit in wide sense may be taken as a surface feature. Examples of surface features (objects) are: atoms, interstices, molecules, grains, nanoparticles, clusters, crystallites, quantum dots, nanoislets, pillars, pores, short nanowires, short nanorods, short nanotubes, viruses, bacteria, organelles, cells, etc.
FOS is designed for high-precision measurement of surface topography (see Fig.) as well as other surface properties and characteristics. Moreover, in comparison with the conventional scanning, FOS allows obtaining a higher spatial resolution. Thanks to a number of techniques embedded in FOS, the distortions caused by thermal drifts and creeps are practically eliminated.
FOS has the following fields of application: surface metrology, precise probe positioning, automatic surface characterization, automatic surface modification/stimulation, automatic manipulation of nanoobjects, nanotechnological processes of “bottom-up” assembly, coordinated control of analytical and technological probes in multiprobe instruments, control of atomic/molecular assemblers, control of probe nanolithographs, etc.
1. R. V. Lapshin (2004). "Feature-oriented scanning methodology for probe microscopy and nanotechnology" (PDF). Nanotechnology. 15 (9). UK: IOP: 1135–1151. Bibcode:2004Nanot..15.1135L. doi:10.1088/0957-4484/15/9/006. ISSN 0957-4484. S2CID 250913438. (Russian translation is available).
2. R. V. Lapshin (2007). "Automatic drift elimination in probe microscope images based on techniques of counter-scanning and topography feature recognition" (PDF). Measurement Science and Technology. 18 (3). UK: IOP: 907–927. Bibcode:2007MeScT..18..907L. doi:10.1088/0957-0233/18/3/046. ISSN 0957-0233. S2CID 121988564. (Russian translation is available).
3. R. V. Lapshin (2011). "Feature-oriented scanning probe microscopy" (PDF). In H. S. Nalwa (ed.). Encyclopedia of Nanoscience and Nanotechnology. Vol. 14. USA: American Scientific Publishers. pp. 105–115. ISBN 978-1-58883-163-7.
4. R. Lapshin (2014). "Feature-oriented scanning probe microscopy: precision measurements, nanometrology, bottom-up nanotechnologies". Electronics: Science, Technology, Business (Special issue “50 years of the Institute of Physical Problems”). Russian Federation: Technosphera Publishers: 94–106. ISSN 1992-4178. (in Russian).
5. R. V. Lapshin (2015). "Drift-insensitive distributed calibration of probe microscope scanner in nanometer range: Approach description" (PDF). Applied Surface Science. 359. Netherlands: Elsevier B. V.: 629–636. arXiv:1501.05545. Bibcode:2015ApSS..359..629L. doi:10.1016/j.apsusc.2015.10.108. ISSN 0169-4332. S2CID 118434225.
6. R. V. Lapshin (2016). "Drift-insensitive distributed calibration of probe microscope scanner in nanometer range: Virtual mode" (PDF). Applied Surface Science. 378. Netherlands: Elsevier B. V.: 530–539. arXiv:1501.05726. Bibcode:2016ApSS..378..530L. doi:10.1016/j.apsusc.2016.03.201. ISSN 0169-4332. S2CID 119191299.
7. R. V. Lapshin (2019). "Drift-insensitive distributed calibration of probe microscope scanner in nanometer range: Real mode". Applied Surface Science. 470. Netherlands: Elsevier B. V.: 1122–1129. arXiv:1501.06679. Bibcode:2019ApSS..470.1122L. doi:10.1016/j.apsusc.2018.10.149. ISSN 0169-4332. S2CID 119275633.
8. R. V. Lapshin (2009). "Availability of feature-oriented scanning probe microscopy for remote-controlled measurements on board a space laboratory or planet exploration rover" (PDF). Astrobiology. 9 (5). USA: Mary Ann Liebert: 437–442. Bibcode:2009AsBio...9..437L. doi:10.1089/ast.2007.0173. ISSN 1531-1074. PMID 19566423.
9. R. V. Lapshin (2014). "Observation of a hexagonal superstructure on pyrolytic graphite by method of feature-oriented scanning tunneling microscopy" (PDF). Proceedings of the 25th Russian Conference on Electron Microscopy (SEM-2014) (in Russian). Vol. 1. June 2–6, Chernogolovka, Russia: Russian Academy of Sciences. pp. 316–317. ISBN 978-5-89589-068-4.{{cite conference}}: CS1 maint: location (link)
10. D. W. Pohl, R. Möller (1988). ""Tracking" tunneling microscopy". Review of Scientific Instruments. 59 (6). USA: AIP Publishing: 840–842. Bibcode:1988RScI...59..840P. doi:10.1063/1.1139790. ISSN 0034-6748.
11. B. S. Swartzentruber (1996). "Direct measurement of surface diffusion using atom-tracking scanning tunneling microscopy". Physical Review Letters. 76 (3). USA: American Physical Society: 459–462. Bibcode:1996PhRvL..76..459S. doi:10.1103/PhysRevLett.76.459. ISSN 0031-9007. PMID 10061462.
12. S. B. Andersson, D. Y. Abramovitch (2007). "A survey of non-raster scan methods with application to atomic force microscopy". Proceedings of the American Control Conference (ACC '07). July 9–13, New York, USA: IEEE. pp. 3516–3521. doi:10.1109/ACC.2007.4282301. ISBN 978-1-4244-0988-4.{{cite conference}}: CS1 maint: location (link)