Suboxides are intermediates along the pathway that forms the normal oxide. Suboxides are sometimes visible when certain metals are exposed to small amounts of O2:
Several suboxides of caesium and rubidium have been characterized by X-ray crystallography. As of 1997, the inventory includes the following Rb9O2, Rb6O, Cs11O3, Cs4O, Cs7O, Cs11O3Rb, Cs11O3Rb2, and Cs11O3Rb3.3
Suboxides are generally colored compounds indicating a degree of electron delocalisation. Cs7O has a unit cell containing a Cs11O3 cluster and 10 Cs atoms. The cluster can be visualised as being composed of three face-sharing octahedra. In the picture below the caesium atoms are purple and the oxygen atoms are red. The Cs-Cs distance in the cluster is 376 pm, which is less than the Cs-Cs distance in the metal of 576 pm. Rb9O2 and Rb6O both contain the Rb9O2 cluster, which can be visualised as two face-sharing octahedra. Rb6O can be formulated as (Rb9O2)Rb3. The Rb-Rb distance in the cluster is 352 pm which is shorter than the Rb-Rb in the metal of 485 pm. It is suggested that caesium suboxides play a role in the Ag-O-Cs (S1) and multialkali Na-K-Sb-Cs photocathodes.4
The suboxide of carbon adopts an unremarkable structure. As for related organic cumulenes (e.g. ketene), C3O2 obeys the octet rule.
Subnitrides are also known. For example, Na16Ba6N features a nitride-centered octahedral cluster of six barium atoms embedded in a matrix of sodium.5
Simon, Arndt (1997). "Group 1 and 2 suboxides and subnitrides — Metals with atomic size holes and tunnels". Coordination Chemistry Reviews. 163: 253–270. doi:10.1016/S0010-8545(97)00013-1. /wiki/Doi_(identifier) ↩
Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8. 978-0-08-037941-8 ↩
King, R Bruce, ed. (1994) Oxides: solid state chemistry, Vol. 6 of WH McCarrroll Encyclopedia of Inorganic chemistry. John Wiley and Sons. ISBN 0-471-93620-0 /wiki/ISBN_(identifier) ↩