The problem can naturally be rephrased for any computational model in which there are notions of "configuration" and "transition". A member of the model will be mortal if there is no configuration that leads to an infinite chain of transitions. The mortality problem has been proved undecidable for:
Hooper, P. (1966). "The undecidability of the Turing machine immortality problem". Journal of Symbolic Logic. 31 (2): 219–234. doi:10.2307/2269811. JSTOR 2269811. /wiki/Doi_(identifier) ↩
Herman, Gabor (1969). "A simple solution of the uniform halting problem". Journal of Symbolic Logic. 34 (4): 639–640. doi:10.2307/2270856. JSTOR 2270856. /wiki/Doi_(identifier) ↩
Kurtz, Stuart A.; Simon, Janos (2007). "The Undecidability of the Generalized Collatz Problem". Theory and Applications of Models of Computation. Lecture Notes in Computer Science. Vol. 4484. pp. 542–553. doi:10.1007/978-3-540-72504-6_49. ISBN 978-3-540-72503-9. {{cite book}}: |journal= ignored (help) 978-3-540-72503-9 ↩
Blondel, Vincent D.; Bournez, Olivier; Koiran, Pascal; Papadimitriou, Christos H.; Tsitsiklis, John N. (2001-03-28). "Deciding stability and mortality of piecewise affine dynamical systems" (PDF). Theoretical Computer Science. 255 (1): 687–696. doi:10.1016/S0304-3975(00)00399-6. ISSN 0304-3975. https://hal-lara.archives-ouvertes.fr/hal-02101802/file/RR1999-05.pdf ↩
Ben-Amram, Amir M. (2015-01-01). "Mortality of iterated piecewise affine functions over the integers: Decidability and complexity". Computability. 4 (1): 19–56. doi:10.3233/COM-150032. ISSN 2211-3568. https://content.iospress.com/articles/computability/com032 ↩