This table lists the complexity of mathematical operations on integers.
Here we consider operations over polynomials and n denotes their degree; for the coefficients we use a unit-cost model, ignoring the number of bits in a number. In practice this means that we assume them to be machine integers.
Many of the methods in this section are given in Borwein & Borwein.
Below, the size
n
{\displaystyle n}
refers to the number of digits of precision at which the function is to be evaluated.
It is not known whether
O
(
M
(
n
)
log
n
)
{\displaystyle O(M(n)\log n)}
is the optimal complexity for elementary functions. The best known lower bound is the trivial bound
Ω
{\displaystyle \Omega }
(
M
(
n
)
)
{\displaystyle (M(n))}
.
This table gives the complexity of computing approximations to the given constants to
n
{\displaystyle n}
correct digits.
The following complexity figures assume that arithmetic with individual elements has complexity O(1), as is the case with fixed-precision floating-point arithmetic or operations on a finite field.
Schönhage, A.; Grotefeld, A.F.W.; Vetter, E. (1994). Fast Algorithms—A Multitape Turing Machine Implementation. BI Wissenschafts-Verlag. ISBN 978-3-411-16891-0. OCLC 897602049. 978-3-411-16891-0
Knuth 1997 - Knuth, Donald Ervin (1997). Seminumerical Algorithms. The Art of Computer Programming. Vol. 2 (3rd ed.). Addison-Wesley. ISBN 978-0-201-89684-8.
Harvey, D.; Van Der Hoeven, J. (2021). "Integer multiplication in time O (n log n)" (PDF). Annals of Mathematics. 193 (2): 563–617. doi:10.4007/annals.2021.193.2.4. S2CID 109934776. https://hal.archives-ouvertes.fr/hal-02070778v2/file/nlogn.pdf
Klarreich, Erica (December 2019). "Multiplication hits the speed limit". Commun. ACM. 63 (1): 11–13. doi:10.1145/3371387. S2CID 209450552. /wiki/Doi_(identifier)
Burnikel, Christoph; Ziegler, Joachim (1998). Fast Recursive Division. Forschungsberichte des Max-Planck-Instituts für Informatik. Saarbrücken: MPI Informatik Bibliothek & Dokumentation. OCLC 246319574. MPII-98-1-022. /wiki/OCLC_(identifier)
Schönhage, Arnold (1980). "Storage Modification Machines". SIAM Journal on Computing. 9 (3): 490–508. doi:10.1137/0209036. /wiki/Doi_(identifier)
Borwein, J.; Borwein, P. (1987). Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity. Wiley. ISBN 978-0-471-83138-9. OCLC 755165897. 978-0-471-83138-9
Chudnovsky, David; Chudnovsky, Gregory (1988). "Approximations and complex multiplication according to Ramanujan". Ramanujan revisited: Proceedings of the Centenary Conference. Academic Press. pp. 375–472. ISBN 978-0-01-205856-5. 978-0-01-205856-5
Brent, Richard P. (2014) [1975]. "Multiple-precision zero-finding methods and the complexity of elementary function evaluation". In Traub, J.F. (ed.). Analytic Computational Complexity. Elsevier. pp. 151–176. arXiv:1004.3412. ISBN 978-1-4832-5789-1. 978-1-4832-5789-1
Richard P. Brent (2020), The Borwein Brothers, Pi and the AGM, Springer Proceedings in Mathematics & Statistics, vol. 313, arXiv:1802.07558, doi:10.1007/978-3-030-36568-4, ISBN 978-3-030-36567-7, S2CID 214742997 978-3-030-36567-7
Richard P. Brent (2020), The Borwein Brothers, Pi and the AGM, Springer Proceedings in Mathematics & Statistics, vol. 313, arXiv:1802.07558, doi:10.1007/978-3-030-36568-4, ISBN 978-3-030-36567-7, S2CID 214742997 978-3-030-36567-7
Sorenson, J. (1994). "Two Fast GCD Algorithms". Journal of Algorithms. 16 (1): 110–144. doi:10.1006/jagm.1994.1006. /wiki/Doi_(identifier)
Crandall, R.; Pomerance, C. (2005). "Algorithm 9.4.7 (Stehlé-Zimmerman binary-recursive-gcd)". Prime Numbers – A Computational Perspective (2nd ed.). Springer. pp. 471–3. ISBN 978-0-387-28979-3. 978-0-387-28979-3
Möller N (2008). "On Schönhage's algorithm and subquadratic integer gcd computation" (PDF). Mathematics of Computation. 77 (261): 589–607. Bibcode:2008MaCom..77..589M. doi:10.1090/S0025-5718-07-02017-0. http://www.lysator.liu.se/~nisse/archive/sgcd.pdf
Bernstein, D.J. "Faster Algorithms to Find Non-squares Modulo Worst-case Integers". http://cr.yp.to/papers/nonsquare.ps
Brent, Richard P.; Zimmermann, Paul (2010). "An
O
(
M
(
n
)
log
n
)
{\displaystyle O(M(n)\log n)}
algorithm for the Jacobi symbol". International Algorithmic Number Theory Symposium. Springer. pp. 83–95. arXiv:1004.2091. doi:10.1007/978-3-642-14518-6_10. ISBN 978-3-642-14518-6. S2CID 7632655. 978-3-642-14518-6
Borwein, P. (1985). "On the complexity of calculating factorials". Journal of Algorithms. 6 (3): 376–380. doi:10.1016/0196-6774(85)90006-9. /wiki/Doi_(identifier)
Schönhage, A.; Grotefeld, A.F.W.; Vetter, E. (1994). Fast Algorithms—A Multitape Turing Machine Implementation. BI Wissenschafts-Verlag. ISBN 978-3-411-16891-0. OCLC 897602049. 978-3-411-16891-0
Lenstra jr., H.W.; Pomerance, Carl (2019). "Primality testing with Gaussian periods" (PDF). Journal of the European Mathematical Society. 21 (4): 1229–69. doi:10.4171/JEMS/861. hdl:21.11116/0000-0005-717D-0. /wiki/Hendrik_Lenstra
Tao, Terence (2010). "1.11 The AKS primality test". An epsilon of room, II: Pages from year three of a mathematical blog. Graduate Studies in Mathematics. Vol. 117. American Mathematical Society. pp. 82–86. doi:10.1090/gsm/117. ISBN 978-0-8218-5280-4. MR 2780010. 978-0-8218-5280-4
Morain, F. (2007). "Implementing the asymptotically fast version of the elliptic curve primality proving algorithm". Mathematics of Computation. 76 (257): 493–505. arXiv:math/0502097. Bibcode:2007MaCom..76..493M. doi:10.1090/S0025-5718-06-01890-4. MR 2261033. S2CID 133193. /wiki/Mathematics_of_Computation
Pomerance, Carl; Selfridge, John L.; Wagstaff, Jr., Samuel S. (July 1980). "The pseudoprimes to 25·109" (PDF). Mathematics of Computation. 35 (151): 1003–26. doi:10.1090/S0025-5718-1980-0572872-7. JSTOR 2006210. /wiki/Carl_Pomerance
Baillie, Robert; Wagstaff, Jr., Samuel S. (October 1980). "Lucas Pseudoprimes" (PDF). Mathematics of Computation. 35 (152): 1391–1417. doi:10.1090/S0025-5718-1980-0583518-6. JSTOR 2006406. MR 0583518. /wiki/Samuel_S._Wagstaff,_Jr.
Monier, Louis (1980). "Evaluation and comparison of two efficient probabilistic primality testing algorithms". Theoretical Computer Science. 12 (1): 97–108. doi:10.1016/0304-3975(80)90007-9. MR 0582244. https://doi.org/10.1016%2F0304-3975%2880%2990007-9
Monier, Louis (1980). "Evaluation and comparison of two efficient probabilistic primality testing algorithms". Theoretical Computer Science. 12 (1): 97–108. doi:10.1016/0304-3975(80)90007-9. MR 0582244. https://doi.org/10.1016%2F0304-3975%2880%2990007-9
This form of sub-exponential time is valid for all
ε
>
0
{\displaystyle \varepsilon >0}
. A more precise form of the complexity can be given as
O
(
exp
64
9
b
(
log
b
)
2
3
)
.
{\displaystyle O{\mathord {\left(\exp {\sqrt[{3}]{{\frac {64}{9}}b(\log b)^{2}}}\right)}}.}
Alman, Josh; Williams, Virginia Vassilevska (2020), "A Refined Laser Method and Faster Matrix Multiplication", 32nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2021), pp. 522–539, arXiv:2010.05846, doi:10.1137/1.9781611976465.32, ISBN 978-1-61197-646-5, S2CID 222290442 978-1-61197-646-5
Davie, A.M.; Stothers, A.J. (2013), "Improved bound for complexity of matrix multiplication", Proceedings of the Royal Society of Edinburgh, 143A (2): 351–370, doi:10.1017/S0308210511001648, S2CID 113401430 /wiki/Doi_(identifier)
Vassilevska Williams, Virginia (2014), Breaking the Coppersmith-Winograd barrier: Multiplying matrices in O(n2.373) time /wiki/Virginia_Vassilevska_Williams
Le Gall, François (2014), "Powers of tensors and fast matrix multiplication", Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation — ISSAC '14, p. 23, arXiv:1401.7714, Bibcode:2014arXiv1401.7714L, doi:10.1145/2608628.2627493, ISBN 9781450325011, S2CID 353236 9781450325011
Le Gall, François; Urrutia, Floren (2018). "Improved Rectangular Matrix Multiplication using Powers of the Coppersmith-Winograd Tensor". In Czumaj, Artur (ed.). Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics. doi:10.1137/1.9781611975031.67. ISBN 978-1-61197-503-1. S2CID 33396059. 978-1-61197-503-1
Le Gall, François; Urrutia, Floren (2018). "Improved Rectangular Matrix Multiplication using Powers of the Coppersmith-Winograd Tensor". In Czumaj, Artur (ed.). Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics. doi:10.1137/1.9781611975031.67. ISBN 978-1-61197-503-1. S2CID 33396059. 978-1-61197-503-1
Knight, Philip A. (May 1995). "Fast rectangular matrix multiplication and QR decomposition". Linear Algebra and Its Applications. 221: 69–81. doi:10.1016/0024-3795(93)00230-w. ISSN 0024-3795. https://doi.org/10.1016%2F0024-3795%2893%2900230-w
Rote, G. (2001). "Division-free algorithms for the determinant and the pfaffian: algebraic and combinatorial approaches" (PDF). Computational discrete mathematics. Springer. pp. 119–135. ISBN 3-540-45506-X. 3-540-45506-X
Aho, Alfred V.; Hopcroft, John E.; Ullman, Jeffrey D. (1974). "Theorem 6.6". The Design and Analysis of Computer Algorithms. Addison-Wesley. p. 241. ISBN 978-0-201-00029-0. 978-0-201-00029-0
Fraleigh, J.B.; Beauregard, R.A. (1987). Linear Algebra (3rd ed.). Addison-Wesley. p. 95. ISBN 978-0-201-15459-7. 978-0-201-15459-7
Preparata, F.P.; Sarwate, D.V. (April 1978). "An improved parallel processor bound in fast matrix inversion". Information Processing Letters. 7 (3): 148–150. doi:10.1016/0020-0190(78)90079-0. https://doi.org/10.1016%2F0020-0190%2878%2990079-0
Galil, Zvi; Pan, Victor (January 16, 1989). "Parallel evaluation of the determinant and of the inverse of a matrix". Information Processing Letters. 30 (1): 148–150. doi:10.1016/0020-0190(89)90173-7., in which the
O
(
n
3
)
{\displaystyle O(n^{3})}
term is reduced https://doi.org/10.1016%2F0020-0190%2889%2990173-7
Cohn, Henry; Kleinberg, Robert; Szegedy, Balazs; Umans, Chris (2005). "Group-theoretic Algorithms for Matrix Multiplication". Proceedings of the 46th Annual Symposium on Foundations of Computer Science. IEEE. pp. 379–388. arXiv:math.GR/0511460. doi:10.1109/SFCS.2005.39. ISBN 0-7695-2468-0. S2CID 6429088. 0-7695-2468-0