Like most radioisotopes found in the radium series, 206Pb was initially named as a variation of radium, specifically radium G. It is the decay product of both 210Po (historically called radium F) by alpha decay, and the much rarer 206Tl (radium EII) by beta decay.
In 2025 a published study suggested that the nucleus of 208Pb is not perfectly spherical as previously believed.
Lead-212 (212Pb) is a radioactive isotope of lead that has gained significant attention in nuclear medicine, particularly in targeted alpha therapy (TAT). This isotope is part of the thorium decay series and serves as an important intermediate in various radioactive decay chains. 212Pb is produced through the decay of radon-220 (220Rn), an intermediate product of thorium-228 (228Th) decay. It undergoes radioactive decay through beta emission to form bismuth-212 (212Bi), which further decays to emit alpha particles. This decay chain is particularly important in medical applications, as it is an in-vivo generator system of alpha particles, that can be utilized for therapeutic purposes, particularly TAT, by delivering potent, localized radiation to cancer cells.
While in aqueous solutions, free Pb2+ tends to hydrolyze under physiological pH conditions to form species like Pb(OH)+, which can impact its biodistribution if not properly chelated, chelator-modified complexes have demonstrated high stability in saline and serum environments for extended periods (e.g., 24–72 hours), which is critical for therapeutic applications.
Half-life, spin, and isomer data selected from the following sources.
Jeter, Hewitt W. (March 2000). "Determining the Ages of Recent Sediments Using Measurements of Trace Radioactivity" (PDF). Terra et Aqua (78): 21–28. Archived from the original (PDF) on March 4, 2016. Retrieved October 23, 2019. https://web.archive.org/web/20160304043824/https://www.iadc-dredging.com/ul/cms/terraetaqua/document/0/9/0/90/90/1/terra-et-aqua-nr78-03.pdf
Blank, B.; Regan, P.H. (2000). "Magic and doubly-magic nuclei". Nuclear Physics News. 10 (4): 20–27. doi:10.1080/10506890109411553. S2CID 121966707. https://www.researchgate.net/publication/232899048
Takahashi, K; Boyd, R. N.; Mathews, G. J.; Yokoi, K. (October 1987). "Bound-state beta decay of highly ionized atoms". Physical Review C. 36 (4): 1522–1528. Bibcode:1987PhRvC..36.1522T. doi:10.1103/PhysRevC.36.1522. ISSN 0556-2813. OCLC 1639677. PMID 9954244. Retrieved 2016-11-20. As can be seen in Table I (187Re, 210Pb, 227Ac, and 241Pu), some continuum-state decays are energetically forbidden when the atom is fully ionized. This is because the atomic binding energies liberated by ionization, i.e., the total electron binding in the neutral atom, Bn, increases with Z. If [the decay energy] Qnhttps://www.researchgate.net/publication/13335547
mPb – Excited nuclear isomer. /wiki/Nuclear_isomer
Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier)
( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Modes of decay:
EC:Electron captureIT:Isomeric transition /wiki/Electron_capture
Bold italics symbol as daughter – Daughter product is nearly stable.
Bold symbol as daughter – Daughter product is stable.
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
( ) spin value – Indicates spin with weak assignment arguments.
# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Order of ground state and isomer is uncertain.
Order of ground state and isomer is uncertain.
Used in lead–lead dating /wiki/Lead%E2%80%93lead_dating
Believed to undergo α decay to 200Hg with a half-life over 1.4×1020 years; the theoretical lifetime is around ~1035–37 years.[9] /wiki/Half-life
"Standard Atomic Weights: Lead". CIAAW. 2020. https://www.ciaaw.org/lead.htm
Used in lead–lead dating /wiki/Lead%E2%80%93lead_dating
Final decay product of 4n+2 decay chain (the Radium or Uranium series) /wiki/Decay_product
Kuhn, W. (1929). "LXVIII. Scattering of thorium C" γ-radiation by radium G and ordinary lead". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 8 (52): 628. doi:10.1080/14786441108564923. /wiki/Doi_(identifier)
Believed to undergo α decay to 202Hg with a half-life over 2.5×1021 years; the theoretical lifetime is ~1065–68 years.[9]
"Standard Atomic Weights: Lead". CIAAW. 2020. https://www.ciaaw.org/lead.htm
Used in lead–lead dating /wiki/Lead%E2%80%93lead_dating
Final decay product of 4n+3 decay chain (the Actinium series) /wiki/Actinium_series
Believed to undergo α decay to 203Hg with a half-life over 1.9×1021 years; the theoretical lifetime is ~10152–189 years.[9]
"Standard Atomic Weights: Lead". CIAAW. 2020. https://www.ciaaw.org/lead.htm
Heaviest observationally stable nuclide; final decay product of 4n decay chain (the Thorium series) /wiki/Thorium_series
Believed to undergo α decay to 204Hg with a half-life over 2.6×1021 years; the theoretical lifetime is ~10124–132 years.[9]
"Standard Atomic Weights: Lead". CIAAW. 2020. https://www.ciaaw.org/lead.htm
Intermediate decay product of 237Np /wiki/Neptunium-237
Intermediate decay product of 238U /wiki/Decay_product
Intermediate decay product of 235U /wiki/Decay_product
Intermediate decay product of 232Th /wiki/Decay_product
Intermediate decay product of 237Np /wiki/Neptunium-237
Intermediate decay product of 238U /wiki/Decay_product
Khorasanov, G. L.; Ivanov, A. P.; Blokhin, A. I. (2002). Polonium Issue in Fast Reactor Lead Coolants and One of the Ways of Its Solution. 10th International Conference on Nuclear Engineering. pp. 711–717. doi:10.1115/ICONE10-22330. https://www.researchgate.net/publication/255203791
Woods, G.D. (November 2014). Lead isotope analysis: Removal of 204Hg isobaric interference from 204Pb using ICP-QQQ in MS/MS mode (PDF) (Report). Stockport, UK: Agilent Technologies. https://www.agilent.com/cs/library/applications/5991-5270EN_AppNote8800_ICP-QQQ_Pb.pdf
Woods, G.D. (November 2014). Lead isotope analysis: Removal of 204Hg isobaric interference from 204Pb using ICP-QQQ in MS/MS mode (PDF) (Report). Stockport, UK: Agilent Technologies. https://www.agilent.com/cs/library/applications/5991-5270EN_AppNote8800_ICP-QQQ_Pb.pdf
A. Yu. Smirnov; V. D. Borisevich; A. Sulaberidze (July 2012). "Evaluation of specific cost of obtainment of lead-208 isotope by gas centrifuges using various raw materials". Theoretical Foundations of Chemical Engineering. 46 (4): 373–378. doi:10.1134/S0040579512040161. S2CID 98821122. /wiki/Doi_(identifier)
Blank, B.; Regan, P.H. (2000). "Magic and doubly-magic nuclei". Nuclear Physics News. 10 (4): 20–27. doi:10.1080/10506890109411553. S2CID 121966707. https://www.researchgate.net/publication/232899048
Henderson, J.; Heery, J.; Rocchini, M.; Siciliano, M.; Sensharma, N.; Ayangeakaa, A. D.; Janssens, R. V. F.; Kowalewski, T. M.; Abhishek; Stevenson, P. D.; Yüksel, E.; Brown, B. A.; Rodriguez, T. R.; Robledo, L. M.; Wu, C. Y. (2025-02-14). "Deformation and Collectivity in Doubly Magic Pb208". Physical Review Letters. 134 (6): 062502. doi:10.1103/PhysRevLett.134.062502. https://doi.org/10.1103%2FPhysRevLett.134.062502
Makvandi, Mehran; Dupis, Edouard; Engle, Jonathan W.; Nortier, F. Meiring; Fassbender, Michael E.; Simon, Sam; Birnbaum, Eva R.; Atcher, Robert W.; John, Kevin D.; Rixe, Olivier; Norenberg, Jeffrey P. (2018-02-08). "Alpha-Emitters and Targeted Alpha Therapy in Oncology: from Basic Science to Clinical Investigations". Targeted Oncology. 13 (2): 189–203. doi:10.1007/s11523-018-0550-9. ISSN 1776-2596. OSTI 1459839. PMID 29423595. https://doi.org/10.1007/s11523-018-0550-9
Kokov, K.V.; Egorova, B.V.; German, M.N.; Klabukov, I.D.; Krasheninnikov, M.E.; Larkin-Kondrov, A.A.; Makoveeva, K.A.; Ovchinnikov, M.V.; Sidorova, M.V.; Chuvilin, D.Y. (2022). "212Pb: Production Approaches and Targeted Therapy Applications". Pharmaceutics. 14 (1): 189. doi:10.3390/pharmaceutics14010189. ISSN 1999-4923. PMC 8777968. PMID 35057083. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777968
Makvandi, Mehran; Dupis, Edouard; Engle, Jonathan W.; Nortier, F. Meiring; Fassbender, Michael E.; Simon, Sam; Birnbaum, Eva R.; Atcher, Robert W.; John, Kevin D.; Rixe, Olivier; Norenberg, Jeffrey P. (2018-02-08). "Alpha-Emitters and Targeted Alpha Therapy in Oncology: from Basic Science to Clinical Investigations". Targeted Oncology. 13 (2): 189–203. doi:10.1007/s11523-018-0550-9. ISSN 1776-2596. OSTI 1459839. PMID 29423595. https://doi.org/10.1007/s11523-018-0550-9
Zimmermann, Richard (February 2024). "Is 212 Pb Really Happening? The Post- 177 Lu/ 225 Ac Blockbuster?". Journal of Nuclear Medicine. 65 (2): 176–177. doi:10.2967/jnumed.123.266774. ISSN 0161-5505. PMID 38176723. http://jnm.snmjournals.org/lookup/doi/10.2967/jnumed.123.266774
Kokov, Konstantin V.; Egorova, Bayirta V.; German, Marina N.; Klabukov, Ilya D.; Krasheninnikov, Michael E.; Larkin-Kondrov, Antonius A.; Makoveeva, Kseniya A.; Ovchinnikov, Michael V.; Sidorova, Maria V.; Chuvilin, Dmitry Y. (2022-01-13). "212Pb: Production Approaches and Targeted Therapy Applications". Pharmaceutics. 14 (1): 189. doi:10.3390/pharmaceutics14010189. ISSN 1999-4923. PMID 35057083. https://doi.org/10.3390%2Fpharmaceutics14010189
Bauer, David; Carter, Lukas M.; Atmane, Mohamed I.; De Gregorio, Roberto; Michel, Alexa; Kaminsky, Spencer; Monette, Sebastien; Li, Mengshi; Schultz, Michael K.; Lewis, Jason S. (January 2024). "212 Pb-Pretargeted Theranostics for Pancreatic Cancer". Journal of Nuclear Medicine. 65 (1): 109–116. doi:10.2967/jnumed.123.266388. ISSN 0161-5505. PMC 10755526. PMID 37945380. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10755526
Li, Mengshi; Baumhover, Nicholas J.; Liu, Dijie; Cagle, Brianna S.; Boschetti, Frédéric; Paulin, Guillaume; Lee, Dongyoul; Dai, Zhiming; Obot, Ephraim R.; Marks, Brenna M.; Okeil, Ibrahim; Sagastume, Edwin A.; Gabr, Moustafa; Pigge, F. Christopher; Johnson, Frances L. (2023-01-26). "Preclinical Evaluation of a Lead Specific Chelator (PSC) Conjugated to Radiopeptides for 203Pb and 212Pb-Based Theranostics". Pharmaceutics. 15 (2): 414. doi:10.3390/pharmaceutics15020414. ISSN 1999-4923. PMC 9966725. PMID 36839736. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9966725