The computational complexity of the problem is a subject of research in computer science. For unbounded polyhedra, the problem is known to be NP-hard, more precisely, there is no algorithm that runs in polynomial time in the combined input-output size, unless P=NP.2
A 1992 article by David Avis and Komei Fukuda3 presents a reverse-search algorithm which finds the v vertices of a polytope defined by a nondegenerate system of n inequalities in d dimensions (or, dually, the v facets of the convex hull of n points in d dimensions, where each facet contains exactly d given points) in time O(ndv) and space O(nd). The v vertices in a simple arrangement of n hyperplanes in d dimensions can be found in O(n2dv) time and O(nd) space complexity. The Avis–Fukuda algorithm adapted the criss-cross algorithm for oriented matroids.
Eric W. Weisstein CRC Concise Encyclopedia of Mathematics, 2002, ISBN 1-58488-347-2, p. 3154, article "vertex enumeration" /wiki/Eric_W._Weisstein ↩
Leonid Khachiyan; Endre Boros; Konrad Borys; Khaled Elbassioni; Vladimir Gurvich (March 2008). "Generating All Vertices of a Polyhedron Is Hard". Discrete and Computational Geometry. 39 (1–3): 174–190. doi:10.1007/s00454-008-9050-5. https://doi.org/10.1007%2Fs00454-008-9050-5 ↩
David Avis; Komei Fukuda (December 1992). "A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra". Discrete and Computational Geometry. 8 (1): 295–313. doi:10.1007/BF02293050. https://doi.org/10.1007%2FBF02293050 ↩