Data analysis is primarily concerned with causal questions. For example, did the fertilizer cause the crops to grow? Or, can a given sickness be prevented? Or, why is my friend depressed? The potential outcomes and regression analysis techniques handle such queries when data is collected using designed experiments. Data collected in observational studies require different techniques for causal inference (because, for example, of issues such as confounding). Causal inference techniques used with experimental data require additional assumptions to produce reasonable inferences with observation data. The difficulty of causal inference under such circumstances is often summed up as "correlation does not imply causation".
Some authors prefer using ECA techniques developed using operational definitions of causality because they believe it may help in the search for causal mechanisms.
There are many surveys of causal discovery techniques. This section lists the well-known techniques.
Many of these techniques are discussed in the tutorials provided by the Center for Causal Discovery (CCD) [3].
The PC algorithm has been applied to several different social science data sets.
The PC algorithm has been applied to medical data. Granger causality has been applied to fMRI data. CCD tested their tools using biomedical data [4].
ECA is used in physics to understand the physical causal mechanisms of the system, e.g., in geophysics using the PC-stable algorithm (a variant of the original PC algorithm) and in dynamical systems using pairwise asymmetric inference (a variant of convergent cross mapping).
There is debate over whether or not the relationships between data found using causal discovery are actually causal. Judea Pearl has emphasized that causal inference requires a causal model developed by "intelligence" through an iterative process of testing assumptions and fitting data.
Response to the criticism points out that assumptions used for developing ECA techniques may not hold for a given data set and that any causal relationships discovered during ECA are contingent on these assumptions holding true
There is also a collection of tools and data maintained by the Causality Workbench team [12] and the CCD team [13].
Rohlfing, Ingo; Schneider, Carsten Q. (2018). "A Unifying Framework for Causal Analysis in Set-Theoretic Multimethod Research" (PDF). Sociological Methods & Research. 47 (1): 37–63. doi:10.1177/0049124115626170. S2CID 124804330. Archived from the original (PDF) on 9 October 2022. Retrieved 29 February 2020. https://ghostarchive.org/archive/20221009/https://publications.ceu.edu/sites/default/files/publications/0049124115626170.pdf
Brady, Henry E. (7 July 2011). "Causation and Explanation in Social Science". The Oxford Handbook of Political Science. doi:10.1093/oxfordhb/9780199604456.013.0049. Retrieved 29 February 2020. https://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199604456.001.0001/oxfordhb-9780199604456-e-049
Spirtes, P.; Glymour, C.; Scheines, R. (2012). Causation, Prediction, and Search. Springer Science & Business Media. ISBN 978-1461227489. 978-1461227489
Rosenbaum, Paul (2017). Observation and Experiment: An Introduction to Causal Inference. Harvard University Press. ISBN 9780674975576. 9780674975576
McCracken, James (2016). Exploratory Causal Analysis with Time Series Data (Synthesis Lectures on Data Mining and Knowledge Discovery). Morgan & Claypool Publishers. ISBN 978-1627059343. 978-1627059343
Tukey, John W. (1977). Exploratory Data Analysis. Pearson. ISBN 978-0201076165. 978-0201076165
Spirtes, P.; Glymour, C.; Scheines, R. (2012). Causation, Prediction, and Search. Springer Science & Business Media. ISBN 978-1461227489. 978-1461227489
Rosenbaum, Paul (2017). Observation and Experiment: An Introduction to Causal Inference. Harvard University Press. ISBN 9780674975576. 9780674975576
Pearl, Judea (2018). The Book of Why: The New Science of Cause and Effect. Basic Books. ISBN 978-0465097616. 978-0465097616
Kleinberg, Samantha (2015). Why: A Guide to Finding and Using Causes. O'Reilly Media, Inc. ISBN 978-1491952191. 978-1491952191
Illari, P.; Russo, F. (2014). Causality: Philosophical Theory meets Scientific Practice. OUP Oxford. ISBN 978-0191639685. 978-0191639685
Fisher, R. (1937). The design of experiments. Oliver And Boyd.
Hill, B. (1955). Principles of Medical Statistics. Lancet Limited.
Halpern, J. (2016). Actual Causality. MIT Press. ISBN 978-0262035026. 978-0262035026
Pearl, J.; Glymour, M.; Jewell, N. P. (2016). Causal inference in statistics: a primer. John Wiley & Sons. ISBN 978-1119186847. 978-1119186847
Stone, R. (1993). "The Assumptions on Which Causal Inferences Rest". Journal of the Royal Statistical Society. Series B (Methodological). 55 (2): 455–466. doi:10.1111/j.2517-6161.1993.tb01915.x. /wiki/Doi_(identifier)
Spirtes, P.; Glymour, C.; Scheines, R. (2012). Causation, Prediction, and Search. Springer Science & Business Media. ISBN 978-1461227489. 978-1461227489
Rosenbaum, Paul (2017). Observation and Experiment: An Introduction to Causal Inference. Harvard University Press. ISBN 9780674975576. 9780674975576
Granger, C (1980). "Testing for causality: a personal viewpoint". Journal of Economic Dynamics and Control. 2: 329–352. doi:10.1016/0165-1889(80)90069-X. /wiki/Doi_(identifier)
McCracken, James (2016). Exploratory Causal Analysis with Time Series Data (Synthesis Lectures on Data Mining and Knowledge Discovery). Morgan & Claypool Publishers. ISBN 978-1627059343. 978-1627059343
Spirtes, P.; Glymour, C.; Scheines, R. (2012). Causation, Prediction, and Search. Springer Science & Business Media. ISBN 978-1461227489. 978-1461227489
Granger, C. W. J. (1969). "Investigating Causal Relations by Econometric Models and Cross-spectral Methods". Econometrica. 37 (3): 424–438. doi:10.2307/1912791. JSTOR 1912791. /wiki/Doi_(identifier)
Granger, Clive. "Prize Lecture. NobelPrize.org. Nobel Media AB 2018". https://www.nobelprize.org/prizes/economic-sciences/2003/granger/lecture/
McCracken, James (2016). Exploratory Causal Analysis with Time Series Data (Synthesis Lectures on Data Mining and Knowledge Discovery). Morgan & Claypool Publishers. ISBN 978-1627059343. 978-1627059343
Woodward, James (2004). Making Things Happen: A Theory of Causal Explanation (Oxford Studies in the Philosophy of Science). Oxford University Press. ISBN 978-1435619999. 978-1435619999
Spirtes, P.; Glymour, C.; Scheines, R. (2012). Causation, Prediction, and Search. Springer Science & Business Media. ISBN 978-1461227489. 978-1461227489
Spirtes, P.; Glymour, C. (1991). "An algorithm for fast recovery of sparse causal graphs". Social Science Computer Review. 9 (1): 62–72. doi:10.1177/089443939100900106. S2CID 38398322. /wiki/Doi_(identifier)
Guo, Ruocheng; Cheng, Lu; Li, Jundong; Hahn, P. Richard; Liu, Huan (2020). "A Survey of Learning Causality with Data". ACM Computing Surveys. 53 (4): 1–37. arXiv:1809.09337. doi:10.1145/3397269. S2CID 52822969. /wiki/ArXiv_(identifier)
Spirtes, P.; Glymour, C.; Scheines, R. (2012). Causation, Prediction, and Search. Springer Science & Business Media. ISBN 978-1461227489. 978-1461227489
McCracken, James (2016). Exploratory Causal Analysis with Time Series Data (Synthesis Lectures on Data Mining and Knowledge Discovery). Morgan & Claypool Publishers. ISBN 978-1627059343. 978-1627059343
Guo, Ruocheng; Cheng, Lu; Li, Jundong; Hahn, P. Richard; Liu, Huan (2020). "A Survey of Learning Causality with Data". ACM Computing Surveys. 53 (4): 1–37. arXiv:1809.09337. doi:10.1145/3397269. S2CID 52822969. /wiki/ArXiv_(identifier)
Malinsky, Daniel; Danks, David (2018). "Causal discovery algorithms: A practical guide". Philosophy Compass. 13 (1): e12470. doi:10.1111/phc3.12470. https://doi.org/10.1111%2Fphc3.12470
Spirtes, P.; Zhang, K. (2016). "Causal discovery and inference: concepts and recent methodological advances". Appl Inform (Berl). 3: 3. doi:10.1186/s40535-016-0018-x. PMC 4841209. PMID 27195202. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841209
Yu, Kui; Li, Jiuyong; Liu, Lin; Richard Hahn, P.; Liu, Huan (2016). "A review on algorithms for constraint-based causal discovery". arXiv:1611.03977 [cs.AI]. /wiki/ArXiv_(identifier)
Sun, Jie; Bollt, Erik M.; Li, Jundong; Richard Hahn, P.; Liu, Huan (2014). "Causation entropy identifies indirect influences, dominance of neighbors and anticipatory couplings". Physica D: Nonlinear Phenomena. 267: 49–57. arXiv:1504.03769. Bibcode:2014PhyD..267...49S. doi:10.1016/j.physd.2013.07.001. S2CID 14422483. /wiki/ArXiv_(identifier)
Spirtes, P.; Glymour, C.; Scheines, R. (2012). Causation, Prediction, and Search. Springer Science & Business Media. ISBN 978-1461227489. 978-1461227489
Freedman, David; Humphreys, Paul (1999). "Are there algorithms that discover causal structure?". Synthese. 121 (1–2): 29–54. doi:10.1023/A:1005277613752. S2CID 6826436. /wiki/Doi_(identifier)
Spirtes, P.; Glymour, C.; Scheines, R. (2012). Causation, Prediction, and Search. Springer Science & Business Media. ISBN 978-1461227489. 978-1461227489
Raghu, V. K.; Ramsey, J. D.; Morris, A.; Manatakis, D. V.; Sprites, P.; Chrysanthis, P. K.; Glymour, C.; Benos, P. V. (2018). "Comparison of strategies for scalable causal discovery of latent variable models from mixed data". International Journal of Data Science and Analytics. 6 (33): 33–45. doi:10.1007/s41060-018-0104-3. PMC 6096780. PMID 30148202. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096780
Shimizu, S (2014). "LiNGAM: non-Gaussian methods for estimating causal structures". Behaviormetrika. 41 (1): 65–98. doi:10.2333/bhmk.41.65. S2CID 49238101. /wiki/Doi_(identifier)
Spirtes, P.; Glymour, C.; Scheines, R. (2012). Causation, Prediction, and Search. Springer Science & Business Media. ISBN 978-1461227489. 978-1461227489
Cheek, C.; Zheng, H.; Hallstrom, B. R.; Hughes, R. E. (2018). "Application of a Causal Discovery Algorithm to the Analysis of Arthroplasty Registry Data". Biomedical Engineering and Computational Biology. 9: 117959721875689. doi:10.1177/1179597218756896. PMC 5826097. PMID 29511363. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5826097
Wen, X.; Rangarajan, G.; Ding, M. (2013). "Is Granger Causality a Viable Technique for Analyzing fMRI Data?". PLOS ONE. 8 (7): e67428. Bibcode:2013PLoSO...867428W. doi:10.1371/journal.pone.0067428. PMC 3701552. PMID 23861763. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3701552
Ebert-Uphoff, Imme; Deng, Yi (2017). "Causal discovery in the geosciences—Using synthetic data to learn how to interpret results". Computers & Geosciences. 99: 50–60. Bibcode:2017CG.....99...50E. doi:10.1016/j.cageo.2016.10.008. https://doi.org/10.1016%2Fj.cageo.2016.10.008
McCracken, J. M.; Weigel, R. S.; Li, Jundong; Richard Hahn, P.; Liu, Huan (2014). "Convergent cross-mapping and pairwise asymmetric inference". Phys. Rev. E. 90 (6): 062903. arXiv:1407.5696. Bibcode:2014PhRvE..90f2903M. doi:10.1103/PhysRevE.90.062903. PMID 25615160. S2CID 7506718. /wiki/ArXiv_(identifier)
Spirtes, P.; Glymour, C.; Scheines, R. (2012). Causation, Prediction, and Search. Springer Science & Business Media. ISBN 978-1461227489. 978-1461227489
Freedman, David; Humphreys, Paul (1999). "Are there algorithms that discover causal structure?". Synthese. 121 (1–2): 29–54. doi:10.1023/A:1005277613752. S2CID 6826436. /wiki/Doi_(identifier)
Pearl, Judea (2018). The Book of Why: The New Science of Cause and Effect. Basic Books. ISBN 978-0465097616. 978-0465097616
Spirtes, P.; Glymour, C.; Scheines, R. (2012). Causation, Prediction, and Search. Springer Science & Business Media. ISBN 978-1461227489. 978-1461227489
Stone, R. (1993). "The Assumptions on Which Causal Inferences Rest". Journal of the Royal Statistical Society. Series B (Methodological). 55 (2): 455–466. doi:10.1111/j.2517-6161.1993.tb01915.x. /wiki/Doi_(identifier)
Scheines, R. (1997). "An introduction to causal inference" (PDF). Causality in Crisis: 185–199. http://mlg.eng.cam.ac.uk/zoubin/SALD/Intro-Causal.pdf
Holland, P. W. (1986). "Statistics and causal inference". Journal of the American Statistical Association. 81 (396): 945–960. doi:10.1080/01621459.1986.10478354. S2CID 14377504. /wiki/Doi_(identifier)
Imbens, G. W.; Rubin, D. B. (2015). Causal inference in statistics, social, and biomedical sciences. Cambridge University Press. ISBN 978-0521885881. 978-0521885881
Freedman, David; Humphreys, Paul (1999). "Are there algorithms that discover causal structure?". Synthese. 121 (1–2): 29–54. doi:10.1023/A:1005277613752. S2CID 6826436. /wiki/Doi_(identifier)
Morgan, S. L.; Winship, C. (2015). Counterfactuals and causal inference. Cambridge University Press. ISBN 978-1107065079. 978-1107065079
"Causal Models and Statistical Data, The Tetrad Project". http://www.phil.cmu.edu/tetrad/publications.html
"Tools, Center for Causal Discovery, University of Pittsburg". 10 August 2016. https://www.ccd.pitt.edu/tools/