A user may begin by initialising the variable x, on the interval [0,10], say.
This variable can now be used to perform further computations, for example, computing and plotting roots of a function:
The definite integral can be computed with:
Battles, Zachary; Trefethen, Lloyd N. (2004). "An Extension of MATLAB to Continuous Functions and Operators" (PDF). SIAM Journal on Scientific Computing. 25 (5): 1743–1770. Bibcode:2004SJSC...25.1743B. doi:10.1137/S1064827503430126. http://www.chebfun.org/publications/chebfun_paper.pdf ↩
Trefethen, Lloyd N. (2007). "Computing Numerically with Functions Instead of Numbers" (PDF). Mathematics in Computer Science. 1: 9–19. doi:10.1007/s11786-007-0001-y. http://www.chebfun.org/publications/trefethen_functions.pdf ↩
Pachón, Ricardo; Platte, Rodrigo B.; Trefethen, Lloyd N. (October 2010). "Piecewise-smooth chebfuns" (PDF). IMA Journal of Numerical Analysis. 30 (4): 898–916. doi:10.1093/imanum/drp008. http://people.maths.ox.ac.uk/trefethen/publication/PDF/2010_134.pdf ↩
Driscoll, Tobin A.; Bornemann, Folkmar; Trefethen, Lloyd N. (December 2008). "The chebop system for automatic solution of differential equations" (PDF). BIT Numerical Mathematics. 48 (4): 701–723. doi:10.1007/s10543-008-0198-4. http://www.chebfun.org/publications/driscoll_born_tref.pdf ↩
Townsend, Alex; Trefethen, Lloyd N. (2013). "An Extension of Chebfun to Two Dimensions" (PDF). SIAM Journal on Scientific Computing. 35 (6): C495 – C518. Bibcode:2013SJSC...35C.495T. doi:10.1137/130908002. http://www.chebfun.org/publications/Chebfun2paper.pdf ↩