Thioredoxin reductases are enzymes that catalyze the reduction of thioredoxin and hence they are a central component in the thioredoxin system. Together with thioredoxin (Trx) and NADPH this system's most general description is as a system for reducing disulfide bonds in cells. Electrons are taken from NADPH via TrxR and are transferred to the active site of Trx, which goes on to reduce protein disulfides or other substrates. The Trx system exists in all living cells and has an evolutionary history tied to DNA as a genetic material, defense against oxidative damage due to oxygen metabolism, and redox signaling using molecules like hydrogen peroxide and nitric oxide.
These two classes of TrxR have only ~20% sequence identity in the section of primary sequence where they can be reliably aligned. The net reaction of both classes of TrxR is identical but the mechanism of action of each is distinct.
Mammalian TrxRs have a much higher sequence homology with glutathione reductase than E. coli. The active-site Cys residues in the FAD domain and bound NADPH domain are in close proximity removing the necessity for a 66 degree rotation for electron transfer found in E. coli. An additional feature of the mammalian mechanism is the presence of a selenocysteine residue at the C-terminal end of the protein which is required for catalytic activity. The conserved residues in mammalian active site are -Cys-Val-Asn-Val-Gly-Cys-.
Thioredoxin reductase can be quantified by various methods such as the DTNB assay using Ellman's reagent. The disulfide-based TRFS series of fluorescent probes have shown selective detection of TrxR. Mafireyi synthesized the first diselenide probe that was applied in the detection of TrxR. Other detection methods include immunological techniques and the selenocystine-thioredoxin reductase assay (SC-TR assay).
Since the activity of this enzyme is essential for cell growth and survival, it is a good target for anti-tumor therapy. Furthermore, the enzyme is upregulated in several types of cancer, including malignant mesothelioma. For example, motexafin gadolinium (MGd) is a new chemotherapeutic agent that selectively targets tumor cells, leading to cell death and apoptosis via inhibition of thioredoxin reductase and ribonucleotide reductase.
There has recently been some research to show that low molecular weight thioredoxin reductase could be a target for novel antibiotics (such as auranofin or Ebselen.) This is especially true for Mycobacterium Haemophilum, and could be used for antibiotic resistant bacteria.
Mustacich D, Powis G (February 2000). "Thioredoxin reductase". The Biochemical Journal. 346 Pt 1 (1): 1–8. doi:10.1042/0264-6021:3460001. PMC 1220815. PMID 10657232. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1220815
Jordan A, Aslund F, Pontis E, Reichard P, Holmgren A (July 1997). "Characterization of Escherichia coli NrdH. A glutaredoxin-like protein with a thioredoxin-like activity profile". The Journal of Biological Chemistry. 272 (29): 18044–50. doi:10.1074/jbc.272.29.18044. PMID 9218434. https://doi.org/10.1074%2Fjbc.272.29.18044
Phulera S, Mande SC (June 2013). "The crystal structure of Mycobacterium tuberculosis NrdH at 0.87 Å suggests a possible mode of its activity". Biochemistry. 52 (23): 4056–65. doi:10.1021/bi400191z. PMID 23675692. /wiki/Doi_(identifier)
Phulera S, Akif M, Sardesai AA, Mande SC (2014-01-01). "Redox Proteins of Mycobacterium tuberculosis". Journal of the Indian Institute of Science. 94 (1): 127–138. ISSN 0970-4140. http://journal.library.iisc.ernet.in/index.php/iisc/article/view/4461
Hirt RP, Müller S, Embley TM, Coombs GH (July 2002). "The diversity and evolution of thioredoxin reductase: new perspectives". Trends in Parasitology. 18 (7): 302–8. doi:10.1016/S1471-4922(02)02293-6. PMID 12379950. /wiki/Doi_(identifier)
Mustacich D, Powis G (February 2000). "Thioredoxin reductase". The Biochemical Journal. 346 Pt 1 (1): 1–8. doi:10.1042/0264-6021:3460001. PMC 1220815. PMID 10657232. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1220815
Holmgren A, Lu J (May 2010). "Thioredoxin and thioredoxin reductase: current research with special reference to human disease". Biochemical and Biophysical Research Communications. 396 (1): 120–4. doi:10.1016/j.bbrc.2010.03.083. PMID 20494123. https://zenodo.org/record/1065567
Meyer Y, Buchanan BB, Vignols F, Reichheld JP (2009). "Thioredoxins and glutaredoxins: unifying elements in redox biology". Annual Review of Genetics. 43: 335–67. doi:10.1146/annurev-genet-102108-134201. PMID 19691428. /wiki/Doi_(identifier)
Lillig CH, Holmgren A (Jan 2007). "Thioredoxin and related molecules--from biology to health and disease". Antioxidants & Redox Signaling. 9 (1): 25–47. doi:10.1089/ars.2007.9.25. PMID 17115886. /wiki/Doi_(identifier)
Hirt RP, Müller S, Embley TM, Coombs GH (July 2002). "The diversity and evolution of thioredoxin reductase: new perspectives". Trends in Parasitology. 18 (7): 302–8. doi:10.1016/S1471-4922(02)02293-6. PMID 12379950. /wiki/Doi_(identifier)
Hirt RP, Müller S, Embley TM, Coombs GH (July 2002). "The diversity and evolution of thioredoxin reductase: new perspectives". Trends in Parasitology. 18 (7): 302–8. doi:10.1016/S1471-4922(02)02293-6. PMID 12379950. /wiki/Doi_(identifier)
Hirt RP, Müller S, Embley TM, Coombs GH (July 2002). "The diversity and evolution of thioredoxin reductase: new perspectives". Trends in Parasitology. 18 (7): 302–8. doi:10.1016/S1471-4922(02)02293-6. PMID 12379950. /wiki/Doi_(identifier)
Arscott LD, Gromer S, Schirmer RH, Becker K, Williams CH (Apr 1997). "The mechanism of thioredoxin reductase from human placenta is similar to the mechanisms of lipoamide dehydrogenase and glutathione reductase and is distinct from the mechanism of thioredoxin reductase from Escherichia coli". Proceedings of the National Academy of Sciences of the United States of America. 94 (8): 3621–6. Bibcode:1997PNAS...94.3621A. doi:10.1073/pnas.94.8.3621. PMC 20490. PMID 9108027. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC20490
Conrad M, Jakupoglu C, Moreno SG, Lippl S, Banjac A, Schneider M, Beck H, Hatzopoulos AK, Just U, Sinowatz F, Schmahl W, Chien KR, Wurst W, Bornkamm GW, Brielmeier M (Nov 2004). "Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function". Molecular and Cellular Biology. 24 (21): 9414–23. doi:10.1128/MCB.24.21.9414-9423.2004. PMC 522221. PMID 15485910. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC522221
Williams CH (Oct 1995). "Mechanism and structure of thioredoxin reductase from Escherichia coli". FASEB Journal. 9 (13): 1267–76. doi:10.1096/fasebj.9.13.7557016. hdl:2027.42/154540. PMID 7557016. S2CID 26055087. https://doi.org/10.1096%2Ffasebj.9.13.7557016
Williams CH (Oct 1995). "Mechanism and structure of thioredoxin reductase from Escherichia coli". FASEB Journal. 9 (13): 1267–76. doi:10.1096/fasebj.9.13.7557016. hdl:2027.42/154540. PMID 7557016. S2CID 26055087. https://doi.org/10.1096%2Ffasebj.9.13.7557016
Williams CH (Oct 1995). "Mechanism and structure of thioredoxin reductase from Escherichia coli". FASEB Journal. 9 (13): 1267–76. doi:10.1096/fasebj.9.13.7557016. hdl:2027.42/154540. PMID 7557016. S2CID 26055087. https://doi.org/10.1096%2Ffasebj.9.13.7557016
Sandalova T, Zhong L, Lindqvist Y, Holmgren A, Schneider G (Aug 2001). "Three-dimensional structure of a mammalian thioredoxin reductase: implications for mechanism and evolution of a selenocysteine-dependent enzyme". Proceedings of the National Academy of Sciences of the United States of America. 98 (17): 9533–8. Bibcode:2001PNAS...98.9533S. doi:10.1073/pnas.171178698. PMC 55487. PMID 11481439. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC55487
Sandalova T, Zhong L, Lindqvist Y, Holmgren A, Schneider G (Aug 2001). "Three-dimensional structure of a mammalian thioredoxin reductase: implications for mechanism and evolution of a selenocysteine-dependent enzyme". Proceedings of the National Academy of Sciences of the United States of America. 98 (17): 9533–8. Bibcode:2001PNAS...98.9533S. doi:10.1073/pnas.171178698. PMC 55487. PMID 11481439. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC55487
Mustacich D, Powis G (February 2000). "Thioredoxin reductase". The Biochemical Journal. 346 Pt 1 (1): 1–8. doi:10.1042/0264-6021:3460001. PMC 1220815. PMID 10657232. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1220815
Mustacich D, Powis G (February 2000). "Thioredoxin reductase". The Biochemical Journal. 346 Pt 1 (1): 1–8. doi:10.1042/0264-6021:3460001. PMC 1220815. PMID 10657232. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1220815
Lennon BW, Williams CH (Aug 1997). "Reductive half-reaction of thioredoxin reductase from Escherichia coli". Biochemistry. 36 (31): 9464–77. doi:10.1021/bi970307j. PMID 9235991. /wiki/Doi_(identifier)
Mustacich D, Powis G (February 2000). "Thioredoxin reductase". The Biochemical Journal. 346 Pt 1 (1): 1–8. doi:10.1042/0264-6021:3460001. PMC 1220815. PMID 10657232. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1220815
Mustacich D, Powis G (February 2000). "Thioredoxin reductase". The Biochemical Journal. 346 Pt 1 (1): 1–8. doi:10.1042/0264-6021:3460001. PMC 1220815. PMID 10657232. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1220815
Mustacich D, Powis G (February 2000). "Thioredoxin reductase". The Biochemical Journal. 346 Pt 1 (1): 1–8. doi:10.1042/0264-6021:3460001. PMC 1220815. PMID 10657232. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1220815
Li X, Zhang B, Yan C, Li J, Wang S, Wei X, et al. (June 2019). "A fast and specific fluorescent probe for thioredoxin reductase that works via disulphide bond cleavage". Nature Communications. 10 (1): 2745. Bibcode:2019NatCo..10.2745L. doi:10.1038/s41467-019-10807-8. PMC 6588570. PMID 31227705. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588570
Ma H, Zhang J, Zhang Z, Liu Y, Fang J (October 2016). "A fast response and red emission probe for mammalian thioredoxin reductase". Chemical Communications. 52 (81): 12060–12063. doi:10.1039/C6CC04984B. PMID 27709154. /wiki/Doi_(identifier)
Zhao J, Qu Y, Gao H, Zhong M, Li X, Zhang F, et al. (November 2020). "Loss of thioredoxin reductase function in a mouse stroke model disclosed by a two-photon fluorescent probe". Chemical Communications. 56 (90): 14075–14078. doi:10.1039/D0CC05900E. PMID 33107534. S2CID 225082279. /wiki/Doi_(identifier)
Liu Y, Ma H, Zhang L, Cui Y, Liu X, Fang J (February 2016). "A small molecule probe reveals declined mitochondrial thioredoxin reductase activity in a Parkinson's disease model". Chemical Communications. 52 (11): 2296–9. doi:10.1039/c5cc09998f. PMID 26725656. /wiki/Doi_(identifier)
Mafireyi TJ, Laws M, Bassett JW, Cassidy PB, Escobedo JO, Strongin RM (August 2020). "A Diselenide Turn-On Fluorescent Probe for the Detection of Thioredoxin Reductase". Angewandte Chemie. 59 (35): 15147–15151. Bibcode:2020AngCh.13215259M. doi:10.1002/ange.202004094. PMC 9438933. PMID 32449244. S2CID 229142596. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9438933
Mafireyi TJ, Escobedo JO, Strongin RM (2021-03-29). "Fluorogenic probes for thioredoxin reductase activity". Results in Chemistry. 3: 100127. doi:10.1016/j.rechem.2021.100127. ISSN 2211-7156. https://doi.org/10.1016%2Fj.rechem.2021.100127
Nilsonne G, Sun X, Nyström C, Rundlöf AK, Potamitou Fernandes A, Björnstedt M, Dobra K (Sep 2006). "Selenite induces apoptosis in sarcomatoid malignant mesothelioma cells through oxidative stress". Free Radical Biology & Medicine. 41 (6): 874–85. doi:10.1016/j.freeradbiomed.2006.04.031. hdl:10616/47514. PMID 16934670. /wiki/Doi_(identifier)
Kahlos K, Soini Y, Säily M, Koistinen P, Kakko S, Pääkkö P, Holmgren A, Kinnula VL (May 2001). "Up-regulation of thioredoxin and thioredoxin reductase in human malignant pleural mesothelioma". International Journal of Cancer. 95 (3): 198–204. doi:10.1002/1097-0215(20010520)95:3<198::AID-IJC1034>3.0.CO;2-F. PMID 11307155. https://doi.org/10.1002%2F1097-0215%2820010520%2995%3A3%3C198%3A%3AAID-IJC1034%3E3.0.CO%3B2-F
Conrad M, Jakupoglu C, Moreno SG, Lippl S, Banjac A, Schneider M, Beck H, Hatzopoulos AK, Just U, Sinowatz F, Schmahl W, Chien KR, Wurst W, Bornkamm GW, Brielmeier M (Nov 2004). "Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function". Molecular and Cellular Biology. 24 (21): 9414–23. doi:10.1128/MCB.24.21.9414-9423.2004. PMC 522221. PMID 15485910. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC522221
Sibbing D, Pfeufer A, Perisic T, Mannes AM, Fritz-Wolf K, Unwin S, Sinner MF, Gieger C, Gloeckner CJ, Wichmann HE, Kremmer E, Schäfer Z, Walch A, Hinterseer M, Näbauer M, Kääb S, Kastrati A, Schömig A, Meitinger T, Bornkamm GW, Conrad M, von Beckerath N (May 2011). "Mutations in the mitochondrial thioredoxin reductase gene TXNRD2 cause dilated cardiomyopathy". European Heart Journal. 32 (9): 1121–33. doi:10.1093/eurheartj/ehq507. hdl:11858/00-001M-0000-0024-1F10-3. PMID 21247928. https://doi.org/10.1093%2Feurheartj%2Fehq507
Marshall AC, Kidd SE, Lamont-Friedrich SJ, Arentz G, Hoffmann P, Coad BR, Bruning JB (March 2019). "Aspergillus fumigatus Thioredoxin Reductase". Antimicrobial Agents and Chemotherapy. 63 (3). doi:10.1128/AAC.02281-18. PMC 6395915. PMID 30642940. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6395915
Harbut MB, Vilchèze C, Luo X, Hensler ME, Guo H, Yang B, et al. (April 2015). "Auranofin exerts broad-spectrum bactericidal activities by targeting thiol-redox homeostasis". Proceedings of the National Academy of Sciences of the United States of America. 112 (14): 4453–8. Bibcode:2015PNAS..112.4453H. doi:10.1073/pnas.1504022112. PMC 4394260. PMID 25831516. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4394260