Further information: Signal transduction
Hormone producing cells are found in the endocrine glands, such as the thyroid gland, ovaries, and testes.10 Hormonal signaling involves the following steps:11
Exocytosis and other methods of membrane transport are used to secrete hormones when the endocrine glands are signaled. The hierarchical model is an oversimplification of the hormonal signaling process. Cellular recipients of a particular hormonal signal may be one of several cell types that reside within a number of different tissues, as is the case for insulin, which triggers a diverse range of systemic physiological effects. Different tissue types may also respond differently to the same hormonal signal.
Arnold Adolph Berthold was a German physiologist and zoologist, who, in 1849, had a question about the function of the testes. He noticed in castrated roosters that they did not have the same sexual behaviors as roosters with their testes intact. He decided to run an experiment on male roosters to examine this phenomenon. He kept a group of roosters with their testes intact, and saw that they had normal sized wattles and combs (secondary sexual organs), a normal crow, and normal sexual and aggressive behaviors. He also had a group with their testes surgically removed, and noticed that their secondary sexual organs were decreased in size, had a weak crow, did not have sexual attraction towards females, and were not aggressive. He realized that this organ was essential for these behaviors, but he did not know how. To test this further, he removed one testis and placed it in the abdominal cavity. The roosters acted and had normal physical anatomy. He was able to see that location of the testes does not matter. He then wanted to see if it was a genetic factor that was involved in the testes that provided these functions. He transplanted a testis from another rooster to a rooster with one testis removed, and saw that they had normal behavior and physical anatomy as well. Berthold determined that the location or genetic factors of the testes do not matter in relation to sexual organs and behaviors, but that some chemical in the testes being secreted is causing this phenomenon. It was later identified that this factor was the hormone testosterone.1213
Although known primarily for his work on the Theory of Evolution, Charles Darwin was also keenly interested in plants. Through the 1870s, he and his son Francis studied the movement of plants towards light. They were able to show that light is perceived at the tip of a young stem (the coleoptile), whereas the bending occurs lower down the stem. They proposed that a 'transmissible substance' communicated the direction of light from the tip down to the stem. The idea of a 'transmissible substance' was initially dismissed by other plant biologists, but their work later led to the discovery of the first plant hormone.14 In the 1920s Dutch scientist Frits Warmolt Went and Russian scientist Nikolai Cholodny (working independently of each other) conclusively showed that asymmetric accumulation of a growth hormone was responsible for this bending. In 1933 this hormone was finally isolated by Kögl, Haagen-Smit and Erxleben and given the name 'auxin'.151617
British physician George Oliver and physiologist Edward Albert Schäfer, professor at University College London, collaborated on the physiological effects of adrenal extracts. They first published their findings in two reports in 1894, a full publication followed in 1895.1819 Though frequently falsely attributed to secretin, found in 1902 by Bayliss and Starling, Oliver and Schäfer's adrenal extract containing adrenaline, the substance causing the physiological changes, was the first hormone to be discovered. The term hormone would later be coined by Starling.20
William Bayliss and Ernest Starling, a physiologist and biologist, respectively, wanted to see if the nervous system had an impact on the digestive system. They knew that the pancreas was involved in the secretion of digestive fluids after the passage of food from the stomach to the intestines, which they believed to be due to the nervous system. They cut the nerves to the pancreas in an animal model and discovered that it was not nerve impulses that controlled secretion from the pancreas. It was determined that a factor secreted from the intestines into the bloodstream was stimulating the pancreas to secrete digestive fluids. This was named secretin: a hormone.
Hormonal effects are dependent on where they are released, as they can be released in different manners.21 Not all hormones are released from a cell and into the blood until it binds to a receptor on a target. The major types of hormone signaling are:
As hormones are defined functionally, not structurally, they may have diverse chemical structures. Hormones occur in multicellular organisms (plants, animals, fungi, brown algae, and red algae). These compounds occur also in unicellular organisms, and may act as signaling molecules however there is no agreement that these molecules can be called hormones.2223
Further information: List of human hormones
Peptides
Derivatives
Compared with vertebrates, insects and crustaceans possess a number of structurally unusual hormones such as the juvenile hormone, a sesquiterpenoid.27
Further information: Plant hormone
Examples include abscisic acid, auxin, cytokinin, ethylene, and gibberellin.28
Most hormones initiate a cellular response by initially binding to either cell surface receptors or intracellular receptors. A cell may have several different receptors that recognize the same hormone but activate different signal transduction pathways, or a cell may have several different receptors that recognize different hormones and activate the same biochemical pathway.29
Receptors for most peptide as well as many eicosanoid hormones are embedded in the cell membrane as cell surface receptors, and the majority of these belong to the G protein-coupled receptor (GPCR) class of seven alpha helix transmembrane proteins. The interaction of hormone and receptor typically triggers a cascade of secondary effects within the cytoplasm of the cell, described as signal transduction, often involving phosphorylation or dephosphorylation of various other cytoplasmic proteins, changes in ion channel permeability, or increased concentrations of intracellular molecules that may act as secondary messengers (e.g., cyclic AMP). Some protein hormones also interact with intracellular receptors located in the cytoplasm or nucleus by an intracrine mechanism.3031
For steroid or thyroid hormones, their receptors are located inside the cell within the cytoplasm of the target cell. These receptors belong to the nuclear receptor family of ligand-activated transcription factors. To bind their receptors, these hormones must first cross the cell membrane. They can do so because they are lipid-soluble. The combined hormone-receptor complex then moves across the nuclear membrane into the nucleus of the cell, where it binds to specific DNA sequences, regulating the expression of certain genes, and thereby increasing the levels of the proteins encoded by these genes.32 However, it has been shown that not all steroid receptors are located inside the cell. Some are associated with the plasma membrane.33
Hormones have the following effects on the body:34
A hormone may also regulate the production and release of other hormones. Hormone signals control the internal environment of the body through homeostasis.
The rate of hormone biosynthesis and secretion is often regulated by a homeostatic negative feedback control mechanism. Such a mechanism depends on factors that influence the metabolism and excretion of hormones. Thus, higher hormone concentration alone cannot trigger the negative feedback mechanism. Negative feedback must be triggered by overproduction of an "effect" of the hormone.3536
Hormone secretion can be stimulated and inhibited by:
One special group of hormones is the tropic hormones that stimulate the hormone production of other endocrine glands. For example, thyroid-stimulating hormone (TSH) causes growth and increased activity of another endocrine gland, the thyroid, which increases output of thyroid hormones.37
To release active hormones quickly into the circulation, hormone biosynthetic cells may produce and store biologically inactive hormones in the form of pre- or prohormones. These can then be quickly converted into their active hormone form in response to a particular stimulus.38
Eicosanoids are considered to act as local hormones. They are considered to be "local" because they possess specific effects on target cells close to their site of formation. They also have a rapid degradation cycle, making sure they do not reach distant sites within the body.39
Hormones are also regulated by receptor agonists. Hormones are ligands, which are any kinds of molecules that produce a signal by binding to a receptor site on a protein. Hormone effects can be inhibited, thus regulated, by competing ligands that bind to the same target receptor as the hormone in question. When a competing ligand is bound to the receptor site, the hormone is unable to bind to that site and is unable to elicit a response from the target cell. These competing ligands are called antagonists of the hormone.40
Main article: Hormone therapy
Many hormones and their structural and functional analogs are used as medication. The most commonly prescribed hormones are estrogens and progestogens (as methods of hormonal contraception and as HRT),41 thyroxine (as levothyroxine, for hypothyroidism) and steroids (for autoimmune diseases and several respiratory disorders). Insulin is used by many diabetics. Local preparations for use in otolaryngology often contain pharmacologic equivalents of adrenaline, while steroid and vitamin D creams are used extensively in dermatological practice.42
A "pharmacologic dose" or "supraphysiological dose" of a hormone is a medical usage referring to an amount of a hormone far greater than naturally occurs in a healthy body. The effects of pharmacologic doses of hormones may be different from responses to naturally occurring amounts and may be therapeutically useful, though not without potentially adverse side effects. An example is the ability of pharmacologic doses of glucocorticoids to suppress inflammation.
At the neurological level, behavior can be inferred based on hormone concentration, which in turn are influenced by hormone-release patterns; the numbers and locations of hormone receptors; and the efficiency of hormone receptors for those involved in gene transcription. Hormone concentration does not incite behavior, as that would undermine other external stimuli; however, it influences the system by increasing the probability of a certain event to occur.43
Not only can hormones influence behavior, but also behavior and the environment can influence hormone concentration.44 Thus, a feedback loop is formed, meaning behavior can affect hormone concentration, which in turn can affect behavior, which in turn can affect hormone concentration, and so on.45 For example, hormone-behavior feedback loops are essential in providing constancy to episodic hormone secretion, as the behaviors affected by episodically secreted hormones directly prevent the continuous release of sad hormones.46
Three broad stages of reasoning may be used to determine if a specific hormone-behavior interaction is present within a system:
Though colloquially oftentimes used interchangeably, there are various clear distinctions between hormones and neurotransmitters:474849
Neurohormones are a type of hormone that share a commonality with neurotransmitters.53 They are produced by endocrine cells that receive input from neurons, or neuroendocrine cells.54 Both classic hormones and neurohormones are secreted by endocrine tissue; however, neurohormones are the result of a combination between endocrine reflexes and neural reflexes, creating a neuroendocrine pathway.55 While endocrine pathways produce chemical signals in the form of hormones, the neuroendocrine pathway involves the electrical signals of neurons.56 In this pathway, the result of the electrical signal produced by a neuron is the release of a chemical, which is the neurohormone.57 Finally, like a classic hormone, the neurohormone is released into the bloodstream to reach its target.58
Hormone transport and the involvement of binding proteins is an essential aspect when considering the function of hormones.59
The formation of a complex with a binding protein has several benefits: the effective half-life of the bound hormone is increased, and a reservoir of bound hormones is created, which evens the variations in concentration of unbound hormones (bound hormones will replace the unbound hormones when these are eliminated).60 An example of the usage of hormone-binding proteins is in the thyroxine-binding protein which carries up to 80% of all thyroxine in the body, a crucial element in regulating the metabolic rate.61
Shuster M (2014-03-14). Biology for a Changing World, with Physiology (Second ed.). New York, NY: W. H. Freeman. ISBN 978-1-4641-5113-2. OCLC 884499940. 978-1-4641-5113-2 ↩
Neave N (2008). Hormones and behaviour: a psychological approach. Cambridge: Cambridge Univ. Press. ISBN 978-0-521-69201-4. 978-0-521-69201-4 ↩
Gibson CL (2010). "Hormones and Behaviour: A Psychological Approach (review)". Perspectives in Biology and Medicine. 53 (1). Project Muse: 152–155. doi:10.1353/pbm.0.0141. ISSN 1529-8795. S2CID 72100830. /wiki/Doi_(identifier) ↩
"Hormones". MedlinePlus. U.S. National Library of Medicine. https://medlineplus.gov/hormones.html ↩
"Hormone - The hormones of plants". Encyclopedia Britannica. Retrieved 2021-01-05. https://www.britannica.com/science/hormone ↩
Ruhs S, Nolze A, Hübschmann R, Grossmann C (July 2017). "30 Years of the Mineralocorticoid Receptor: Nongenomic effects via the mineralocorticoid receptor". The Journal of Endocrinology. 234 (1): T107 – T124. doi:10.1530/JOE-16-0659. PMID 28348113. https://doi.org/10.1530%2FJOE-16-0659 ↩
Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J (March 2001). "BRI1 is a critical component of a plasma-membrane receptor for plant steroids". Nature. 410 (6826): 380–3. Bibcode:2001Natur.410..380W. doi:10.1038/35066597. PMID 11268216. S2CID 4412000. /wiki/Bibcode_(identifier) ↩
Miller BF, Keane CB (1997). Miller-Keane Encyclopedia & dictionary of medicine, nursing & allied health (6th ed.). Philadelphia: Saunders. ISBN 0-7216-6278-1. OCLC 36465055. 0-7216-6278-1 ↩
"Plant Hormones/Nutrition". www2.estrellamountain.edu. Archived from the original on 2021-01-09. Retrieved 2021-01-07. https://web.archive.org/web/20210109180441/https://www2.estrellamountain.edu/faculty/farabee/biobk/BioBookPLANTHORM.html#:~:text=They%20are%20produced%20in%20the,lighter%20side%20of%20the%20plant. ↩
Wisse B (13 June 2021). "Endocrine glands". MedlinePlus. U.S. National Library of Medicine. Retrieved November 18, 2021. https://medlineplus.gov/ency/imagepages/1093.htm ↩
Nussey S, Whitehead S (2001). Endocrinology: an integrated approach. Oxford: Bios Scientific Publ. ISBN 978-1-85996-252-7. PMID 20821847. 978-1-85996-252-7 ↩
Belfiore A, LeRoith PE (2018). Principles of Endocrinology and Hormone Action. Cham: Springer. ISBN 978-3-319-44675-2. OCLC 1021173479. 978-3-319-44675-2 ↩
Molina PE, ed. (2018). Endocrine Physiology. McGraw-Hill Education. ISBN 978-1-260-01935-3. OCLC 1034587285. 978-1-260-01935-3 ↩
Whippo CW, Hangarter RP (May 2006). "Phototropism: bending towards enlightenment". The Plant Cell. 18 (5): 1110–9. Bibcode:2006PlanC..18.1110W. doi:10.1105/tpc.105.039669. PMC 1456868. PMID 16670442. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1456868 ↩
Wieland OP, De Ropp RS, Avener J (April 1954). "Identity of auxin in normal urine". Nature. 173 (4408): 776–7. Bibcode:1954Natur.173..776W. doi:10.1038/173776a0. PMID 13165644. S2CID 4225835. https://www.nature.com/articles/173776a0 ↩
Holland JJ, Roberts D, Liscum E (2009-05-01). "Understanding phototropism: from Darwin to today". Journal of Experimental Botany. 60 (7): 1969–78. doi:10.1093/jxb/erp113. PMID 19357428. https://doi.org/10.1093%2Fjxb%2Ferp113 ↩
"Proceedings of the Physiological Society, March 10, 1894. No. I". The Journal of Physiology. 16 (3–4): i–viii. April 1894. doi:10.1113/jphysiol.1894.sp000503. PMC 1514529. PMID 16992168. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1514529 ↩
Oliver G, Schäfer EA (July 1895). "The Physiological Effects of Extracts of the Suprarenal Capsules". The Journal of Physiology. 18 (3): 230–276. doi:10.1113/jphysiol.1895.sp000564. PMC 1514629. PMID 16992252. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1514629 ↩
Bayliss WM, Starling EH (1968). "The Mechanism of Pancreatic Secretion". In Leicester HM (ed.). Source Book in Chemistry, 1900–1950. Harvard University Press. pp. 311–313. doi:10.4159/harvard.9780674366701.c111. ISBN 978-0-674-36670-1. 978-0-674-36670-1 ↩
Molina PE (2018). Endocrine physiology. McGraw-Hill Education. ISBN 978-1-260-01935-3. OCLC 1034587285. 978-1-260-01935-3 ↩
Lenard J (April 1992). "Mammalian hormones in microbial cells". Trends in Biochemical Sciences. 17 (4): 147–50. doi:10.1016/0968-0004(92)90323-2. PMID 1585458. /wiki/Doi_(identifier) ↩
Janssens PM (1987). "Did vertebrate signal transduction mechanisms originate in eukaryotic microbes?". Trends in Biochemical Sciences. 12: 456–459. doi:10.1016/0968-0004(87)90223-4. /wiki/Doi_(identifier) ↩
Marieb E (2014). Anatomy & physiology. Glenview, IL: Pearson Education, Inc. ISBN 978-0-321-86158-0. 978-0-321-86158-0 ↩
Heyland A, Hodin J, Reitzel AM (January 2005). "Hormone signaling in evolution and development: a non-model system approach". BioEssays. 27 (1): 64–75. doi:10.1002/bies.20136. PMID 15612033. /wiki/Doi_(identifier) ↩
Wang YH, Irving HR (April 2011). "Developing a model of plant hormone interactions". Plant Signaling & Behavior. 6 (4): 494–500. Bibcode:2011PlSiB...6..494W. doi:10.4161/psb.6.4.14558. PMC 3142376. PMID 21406974. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3142376 ↩
"Signal relay pathways". Khan Academy. Retrieved 2019-11-13. https://www.khanacademy.org/science/biology/cell-signaling/mechanisms-of-cell-signaling/a/intracellular-signal-transduction ↩
Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000). "G Protein –Coupled Receptors and Their Effectors". Molecular Cell Biology (4th ed.). https://www.ncbi.nlm.nih.gov/books/NBK21718/ ↩
Rosenbaum DM, Rasmussen SG, Kobilka BK (May 2009). "The structure and function of G-protein-coupled receptors". Nature. 459 (7245): 356–63. Bibcode:2009Natur.459..356R. doi:10.1038/nature08144. PMC 3967846. PMID 19458711. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3967846 ↩
Beato M, Chávez S, Truss M (April 1996). "Transcriptional regulation by steroid hormones". Steroids. 61 (4): 240–51. doi:10.1016/0039-128X(96)00030-X. PMID 8733009. S2CID 20654561. /wiki/Doi_(identifier) ↩
Hammes SR (March 2003). "The further redefining of steroid-mediated signaling". Proceedings of the National Academy of Sciences of the United States of America. 100 (5): 2168–70. Bibcode:2003PNAS..100.2168H. doi:10.1073/pnas.0530224100. PMC 151311. PMID 12606724. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC151311 ↩
Lall S (2013). Clearopathy. India: Partridge Publishing India. p. 1. ISBN 978-1-4828-1588-7. 978-1-4828-1588-7 ↩
Campbell M, Jialal I (2019). "Physiology, Endocrine Hormones". StatPearls. StatPearls Publishing. PMID 30860733. Retrieved 13 November 2019. http://www.ncbi.nlm.nih.gov/books/NBK538498/ ↩
Röder PV, Wu B, Liu Y, Han W (March 2016). "Pancreatic regulation of glucose homeostasis". Experimental & Molecular Medicine. 48 (3): e219. doi:10.1038/emm.2016.6. PMC 4892884. PMID 26964835. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4892884 ↩
Shah SB, Saxena R (2012). Allergy-hormone links. New Delhi: Jaypee Brothers Medical Publishers (P) Ltd. ISBN 978-93-5025-013-6. OCLC 761377585. 978-93-5025-013-6 ↩
"Eicosanoids". www.rpi.edu. Retrieved 2017-02-08. ↩
Silverthorn DU, Johnson BR, Ober WC, Ober CW (2016). Human physiology : an integrated approach (Seventh ed.). San Francisco: Pearson. ISBN 978-0-321-98122-6. OCLC 890107246. 978-0-321-98122-6 ↩
"Hormone Therapy". Cleveland Clinic. https://my.clevelandclinic.org/health/treatments/15245-hormone-therapy ↩
Sfetcu N (2014-05-02). Health & Drugs: Disease, Prescription & Medication. Nicolae Sfetcu. https://books.google.com/books?id=8jF-AwAAQBAJ&dq=Local+preparations+for+use+in+otolaryngology+often+contain+pharmacologic+equivalents+of+adrenaline%2C+while+steroid+and+vitamin+D+creams+are+used+extensively+in+dermatological+practice&pg=PA1126 ↩
Nelson, R. J. (2021). Hormones & behavior. In R. Biswas-Diener & E. Diener (Eds), Noba textbook series: Psychology. Champaign, IL: DEF publishers. Retrieved from http://noba.to/c6gvwu9m http://noba.to/c6gvwu9m ↩
Nelson RJ (2010), "Hormones and Behavior: Basic Concepts", Encyclopedia of Animal Behavior, Elsevier, pp. 97–105, doi:10.1016/b978-0-08-045337-8.00236-9, ISBN 978-0-08-045337-8, S2CID 7479319, retrieved 2021-11-18 978-0-08-045337-8 ↩
Garland T, Zhao M, Saltzman W (August 2016). "Hormones and the Evolution of Complex Traits: Insights from Artificial Selection on Behavior". Integrative and Comparative Biology. 56 (2): 207–24. doi:10.1093/icb/icw040. PMC 5964798. PMID 27252193. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5964798 ↩
Pfaff DW, Rubin RT, Schneider JE, Head GA (2018). Principles of hormone/behavior relations (2nd ed.). London, United Kingdom: Academic Press. ISBN 978-0-12-802667-0. OCLC 1022119040. 978-0-12-802667-0 ↩
Reece JB, Urry LA, Cain ML, Wasserman SA, Minorsky PV, Jackson RB, Campbell NA (2014). Campbell biology (Tenth ed.). Boston: Pearson. ISBN 978-0-321-77565-8. OCLC 849822337. 978-0-321-77565-8 ↩
Siegel A, Sapru H, Hreday N, Siegel H (2006). Essential neuroscience. Philadelphia: Lippincott Williams & Wilkins. ISBN 0-7817-5077-6. OCLC 60650938. 0-7817-5077-6 ↩
Purves D, Williams SM (2001). Neuroscience (2nd ed.). Sunderland, Mass.: Sinauer Associates. ISBN 0-87893-742-0. OCLC 44627256. 0-87893-742-0 ↩
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002). Molecular biology of the cell (4th ed.). New York: Garland Science. ISBN 0-8153-3218-1. OCLC 48122761. 0-8153-3218-1 ↩
Purves WK, Kirkwood W (2001). Life, the science of biology (6th ed.). Sunderland, MA: Sinauer Associates. ISBN 0-7167-3873-2. OCLC 45064683. 0-7167-3873-2 ↩
"Hormones". OpenStaxCollege. 2013-03-06. https://pressbooks-dev.oer.hawaii.edu/anatomyandphysiology/chapter/hormones/ ↩
Boron WF, Boulpaep EL. Medical physiology: a cellular and molecular approach. Updated 2. Philadelphia, Pa: Saunders Elsevier; 2012. ↩
Oppenheimer JH (1968-05-23). "Role of Plasma Proteins in the Binding, Distribution and Metabolism of the Thyroid Hormones". New England Journal of Medicine. 278 (21): 1153–1162. doi:10.1056/NEJM196805232782107. ISSN 0028-4793. PMID 4172185. http://www.nejm.org/doi/abs/10.1056/NEJM196805232782107 ↩