Mill scale is sought after by select abstract expressionist artists[like whom?] as its effect on steel can cause unpredicted and seemingly random abstract organic visual effects. Although the majority of mill scale is removed from steel during its passage through scale breaker rolls during manufacturing, smaller structurally inconsequential residue can be visible. Leveraging this processing vestige by accelerating its corrosive effects through the metallurgical use of phosphoric acid or in conjunction with selenium dioxide can create a high contrast visual substrate onto which other compositional elements can be added.
Mill scale can be used as a raw material in granular refractory. When this refractory is cast and preheated, these scales provide escape routes for the evaporating water vapor, thus preventing cracks and resulting in a strong, monolithic structure.
Mill scale is a complex oxide that contains around 70% iron with traces of nonferrous metals and alkaline compounds. Reduced iron powder may be obtained by conversion of mill scale into a single highest oxide i.e. hematite (Fe2O3) followed by reduction with hydrogen. Shahid and Choi reported the reverse co-precipitation method for the synthesis of magnetite (Fe3O4) from mill scale and used for multiple environmental applications such as nutrient recovery,2 ballasted coagulation in activated sludge process, and heavy metal remediation in an aqueous environment.3
Cunha, Adriano Ferreira da; Mol, Marcos Paulo Gomes; Martin's, Máximo Eleotério; Assis, Paulo Santos (March 2006). "Caracterização, beneficiamento e reciclagem de carepas geradas em processos siderúrgicos". Rem: Revista Escola de Minas. 59 (1): 111–116. doi:10.1590/S0370-44672006000100014. ISSN 0370-4467. https://doi.org/10.1590%2FS0370-44672006000100014 ↩
Shahid, Muhammad Kashif; Kim, Yunjung; Choi, Young-Gyun (August 2019). "Magnetite synthesis using iron oxide waste and its application for phosphate adsorption with column and batch reactors". Chemical Engineering Research and Design. 148: 169-179. Bibcode:2019CERD..148..169S. doi:10.1016/j.cherd.2019.06.001. https://doi.org/10.1016/j.cherd.2019.06.001 ↩
Shahid, Muhammad Kashif; Choi, Younggyun (1 February 2020). "Characterization and application of magnetite Particles, synthesized by reverse coprecipitation method in open air from mill scale". Journal of Magnetism and Magnetic Materials. 495: 165823. doi:10.1016/j.jmmm.2019.165823. https://doi.org/10.1016/j.jmmm.2019.165823 ↩