See also: Trace inequality § Operator monotone
A function f : I → R {\displaystyle f:I\to \mathbb {R} } defined on an interval I ⊆ R {\displaystyle I\subseteq \mathbb {R} } is said to be operator monotone if whenever A {\displaystyle A} and B {\displaystyle B} are Hermitian matrices (of any size/dimensions) whose eigenvalues all belong to the domain of f {\displaystyle f} and whose difference A − B {\displaystyle A-B} is a positive semi-definite matrix, then necessarily f ( A ) − f ( B ) ≥ 0 {\displaystyle f(A)-f(B)\geq 0} where f ( A ) {\displaystyle f(A)} and f ( B ) {\displaystyle f(B)} are the values of the matrix function induced by f {\displaystyle f} (which are matrices of the same size as A {\displaystyle A} and B {\displaystyle B} ).
Notation
This definition is frequently expressed with the notation that is now defined. Write A ≥ 0 {\displaystyle A\geq 0} to indicate that a matrix A {\displaystyle A} is positive semi-definite and write A ≥ B {\displaystyle A\geq B} to indicate that the difference A − B {\displaystyle A-B} of two matrices A {\displaystyle A} and B {\displaystyle B} satisfies A − B ≥ 0 {\displaystyle A-B\geq 0} (that is, A − B {\displaystyle A-B} is positive semi-definite).
With f : I → R {\displaystyle f:I\to \mathbb {R} } and A {\displaystyle A} as in the theorem's statement, the value of the matrix function f ( A ) {\displaystyle f(A)} is the matrix (of the same size as A {\displaystyle A} ) defined in terms of its A {\displaystyle A} 's spectral decomposition A = ∑ j λ j P j {\displaystyle A=\sum _{j}\lambda _{j}P_{j}} by f ( A ) = ∑ j f ( λ j ) P j , {\displaystyle f(A)=\sum _{j}f(\lambda _{j})P_{j}~,} where the λ j {\displaystyle \lambda _{j}} are the eigenvalues of A {\displaystyle A} with corresponding projectors P j . {\displaystyle P_{j}.}
The definition of an operator monotone function may now be restated as:
A function f : I → R {\displaystyle f:I\to \mathbb {R} } defined on an interval I ⊆ R {\displaystyle I\subseteq \mathbb {R} } said to be operator monotone if (and only if) for all positive integers n , {\displaystyle n,} and all n × n {\displaystyle n\times n} Hermitian matrices A {\displaystyle A} and B {\displaystyle B} with eigenvalues in I , {\displaystyle I,} if A ≥ B {\displaystyle A\geq B} then f ( A ) ≥ f ( B ) . {\displaystyle f(A)\geq f(B).}
Löwner, K.T. (1934). "Über monotone Matrixfunktionen". Mathematische Zeitschrift. 38: 177–216. doi:10.1007/BF01170633. S2CID 121439134. http://eudml.org/doc/168495 ↩
"Löwner–Heinz inequality". Encyclopedia of Mathematics. https://www.encyclopediaofmath.org/index.php/Löwner–Heinz_inequality ↩
Chansangiam, Pattrawut (2013). "Operator Monotone Functions: Characterizations and Integral Representations". arXiv:1305.2471 [math.FA]. /wiki/ArXiv_(identifier) ↩