The first standardized vector, pBR220, was designed in 1977 by researchers in Herbert Boyer’s lab. The plasmid contains various restriction enzyme sites and a stable antibiotic-resistance gene free from transposon activities.
In 1982, Jeffrey Vieira and Joachim Messing described the development of M13mp7-derived pUC vectors that consist of a multiple cloning site and allow for more efficient sequencing and cloning using a set of universal M13 primers. Three years later, the currently popular pUC19 plasmid was engineered by the same scientists.
The gene on a DNA sequence of interest can either be cloned from an existing sequence or developed synthetically. To clone a naturally occurring sequence in an organism, the organism's DNA is first cut with restriction enzymes, which recognize DNA sequences and cut them, around the target gene. The gene can then be amplified using polymerase chain reaction (PCR). Typically, this process includes using short sequences known as primers to initially hybridize to the target sequence; in addition, point mutations can be introduced in the primer sequences and then copied in each cycle in order to modify the target sequence.
There are three general categories of DNA construct delivery: physical, chemical, and viral. Physical methods, which deliver the DNA by physically penetrating the cell, include microinjection, electroporation, and biolistics. Chemical methods rely on chemical reactions to deliver the DNA and include transformation with cells made competent using calcium phosphate as well as delivery via lipid nanoparticles. Viral methods use a variety of viral vectors to deliver the DNA, including adenovirus, lentivirus, and herpes simplex virus
In addition to the target gene, there are three important elements in a vector: an origin of replication, a selectable marker, and a multiple cloning site. An origin of replication is a DNA sequence that starts the process of DNA replication, allowing the vector to clone itself. A multiple cloning site contains binding sites for several restriction enzymes, making it easier to insert different DNA sequences into the vector. A selectable marker confers some trait that can be easily selected for in a host cell, so that it can be determined whether transformation was successful. The most common selectable markers are genes for antibiotic resistance, so that host cells without the construct will die off when exposed to the antibody and only host cells with the construct will remain.
DNA constructs can be used to produce proteins, including both naturally occurring proteins and engineered mutant proteins. These proteins can be used to make therapeutic products, such as pharmaceuticals and antibodies. DNA constructs can also change the expression levels of other genes by expressing regulatory sequences such as promoters and inhibitors. Additionally, DNA constructs can be used for research such as creating genomic libraries, sequencing cloned DNA, and studying RNA and protein expression.
Pinkert, Carl (2014). Transgenic animal technology: A laboratory handbook. Amsterdam: Elsevier. p. 692. ISBN 9780124095366. 9780124095366
Carter, Matt; Shieh, Jennifer C. (2010), "Molecular Cloning and Recombinant DNA Technology", Guide to Research Techniques in Neuroscience, Elsevier, pp. 207–227, doi:10.1016/b978-0-12-374849-2.00009-4, ISBN 978-0-12-374849-2, retrieved 2021-11-10 978-0-12-374849-2
Hughes, Randall A.; Ellington, Andrew D. (January 2017). "Synthetic DNA Synthesis and Assembly: Putting the Synthetic in Synthetic Biology". Cold Spring Harbor Perspectives in Biology. 9 (1): a023812. doi:10.1101/cshperspect.a023812. ISSN 1943-0264. PMC 5204324. PMID 28049645. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5204324
Carter, Matt; Shieh, Jennifer C. (2010), "Gene Delivery Strategies", Guide to Research Techniques in Neuroscience, Elsevier, pp. 229–242, doi:10.1016/b978-0-12-374849-2.00010-0, ISBN 978-0-12-374849-2, retrieved 2020-10-24 978-0-12-374849-2
Carter, Matt; Shieh, Jennifer C. (2010), "Molecular Cloning and Recombinant DNA Technology", Guide to Research Techniques in Neuroscience, Elsevier, pp. 207–227, doi:10.1016/b978-0-12-374849-2.00009-4, ISBN 978-0-12-374849-2, retrieved 2021-11-10 978-0-12-374849-2
Glick, Bernard R.; Patten, Cheryl L. (2017). Molecular Biotechnology: Principles and Applications of Recombinant DNA. Washington DC: ASM Press.
Carter, Matt; Shieh, Jennifer C. (2010), "Molecular Cloning and Recombinant DNA Technology", Guide to Research Techniques in Neuroscience, Elsevier, pp. 207–227, doi:10.1016/b978-0-12-374849-2.00009-4, ISBN 978-0-12-374849-2, retrieved 2021-11-10 978-0-12-374849-2
Glick, Bernard R.; Patten, Cheryl L. (2017). Molecular Biotechnology: Principles and Applications of Recombinant DNA. Washington DC: ASM Press.
Bolivar, Francisco; Rodriguez, Raymond L.; Betlach, Mary C.; Boyer, Herbert W. (1977-11-01). "Construction and characterization of new cloning vehicles I. Ampicillin-resistant derivatives of the plasmid pMB9". Gene. 2 (2): 75–93. doi:10.1016/0378-1119(77)90074-9. ISSN 0378-1119. PMID 344136. https://dx.doi.org/10.1016/0378-1119%2877%2990074-9
Yanisch-Perron, Celeste; Vieira, Jeffrey; Messing, Joachim (1985-01-01). "Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors". Gene. 33 (1): 103–119. doi:10.1016/0378-1119(85)90120-9. ISSN 0378-1119. PMID 2985470. https://dx.doi.org/10.1016/0378-1119%2885%2990120-9
Carter, Matt; Shieh, Jennifer C. (2010), "Molecular Cloning and Recombinant DNA Technology", Guide to Research Techniques in Neuroscience, Elsevier, pp. 207–227, doi:10.1016/b978-0-12-374849-2.00009-4, ISBN 978-0-12-374849-2, retrieved 2021-11-10 978-0-12-374849-2
Hughes, Randall A.; Ellington, Andrew D. (January 2017). "Synthetic DNA Synthesis and Assembly: Putting the Synthetic in Synthetic Biology". Cold Spring Harbor Perspectives in Biology. 9 (1): a023812. doi:10.1101/cshperspect.a023812. ISSN 1943-0264. PMC 5204324. PMID 28049645. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5204324
Carter, Matt; Shieh, Jennifer C. (2010), "Molecular Cloning and Recombinant DNA Technology", Guide to Research Techniques in Neuroscience, Elsevier, pp. 207–227, doi:10.1016/b978-0-12-374849-2.00009-4, ISBN 978-0-12-374849-2, retrieved 2021-11-10 978-0-12-374849-2
Carter, Matt; Shieh, Jennifer C. (2010), "Molecular Cloning and Recombinant DNA Technology", Guide to Research Techniques in Neuroscience, Elsevier, pp. 207–227, doi:10.1016/b978-0-12-374849-2.00009-4, ISBN 978-0-12-374849-2, retrieved 2021-11-10 978-0-12-374849-2
Copeland, Neal G.; Jenkins, Nancy A.; Court, Donald L. (October 2001). "Recombineering: a powerful new tool for mouse functional genomics". Nature Reviews Genetics. 2 (10): 769–779. doi:10.1038/35093556. ISSN 1471-0064. PMID 11584293. S2CID 10916548. https://www.nature.com/articles/35093556
Carter, Matt; Shieh, Jennifer C. (2010), "Gene Delivery Strategies", Guide to Research Techniques in Neuroscience, Elsevier, pp. 229–242, doi:10.1016/b978-0-12-374849-2.00010-0, ISBN 978-0-12-374849-2, retrieved 2020-10-24 978-0-12-374849-2
Mehierhumbert, S; Guy, R (2005-04-05). "Physical methods for gene transfer: Improving the kinetics of gene delivery into cells". Advanced Drug Delivery Reviews. 57 (5): 733–753. doi:10.1016/j.addr.2004.12.007. PMID 15757758. https://linkinghub.elsevier.com/retrieve/pii/S0169409X05000086
Felgner, P. L.; Gadek, T. R.; Holm, M.; Roman, R.; Chan, H. W.; Wenz, M.; Northrop, J. P.; Ringold, G. M.; Danielsen, M. (1987-11-01). "Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure". Proceedings of the National Academy of Sciences. 84 (21): 7413–7417. Bibcode:1987PNAS...84.7413F. doi:10.1073/pnas.84.21.7413. ISSN 0027-8424. PMC 299306. PMID 2823261. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC299306
Kingston, Robert E.; Chen, Claudia A.; Rose, John K. (2003). "Calcium Phosphate Transfection". Current Protocols in Molecular Biology. 63 (1): 9.1.1–9.1.11. doi:10.1002/0471142727.mb0901s63. ISSN 1934-3647. PMID 18265332. S2CID 46188175. https://currentprotocols.onlinelibrary.wiley.com/doi/abs/10.1002/0471142727.mb0901s63
Robbins, Paul D.; Ghivizzani, Steven C. (1998). "Viral Vectors for Gene Therapy". Pharmacology & Therapeutics. 80 (1): 35–47. doi:10.1016/S0163-7258(98)00020-5. PMID 9804053. https://linkinghub.elsevier.com/retrieve/pii/S0163725898000205
Carter, Matt; Shieh, Jennifer C. (2010), "Molecular Cloning and Recombinant DNA Technology", Guide to Research Techniques in Neuroscience, Elsevier, pp. 207–227, doi:10.1016/b978-0-12-374849-2.00009-4, ISBN 978-0-12-374849-2, retrieved 2021-11-10 978-0-12-374849-2
Carter, Matt; Shieh, Jennifer C. (2010), "Molecular Cloning and Recombinant DNA Technology", Guide to Research Techniques in Neuroscience, Elsevier, pp. 207–227, doi:10.1016/b978-0-12-374849-2.00009-4, ISBN 978-0-12-374849-2, retrieved 2021-11-10 978-0-12-374849-2
Griffiths, Anthony J.F. (2015). Introduction To Genetic Analysis. New York: W.H. Freeman & Company. ISBN 978-1464188046. 978-1464188046
Carter, Matt; Shieh, Jennifer C. (2010), "Molecular Cloning and Recombinant DNA Technology", Guide to Research Techniques in Neuroscience, Elsevier, pp. 207–227, doi:10.1016/b978-0-12-374849-2.00009-4, ISBN 978-0-12-374849-2, retrieved 2021-11-10 978-0-12-374849-2
Godiska, R.; Wu, C. -C.; Mead, D. A. (2013-01-01), "Genomic Libraries", in Maloy, Stanley; Hughes, Kelly (eds.), Brenner's Encyclopedia of Genetics (Second Edition), San Diego: Academic Press, pp. 306–309, doi:10.1016/b978-0-12-374984-0.00641-0, ISBN 978-0-08-096156-9, retrieved 2020-11-06 978-0-08-096156-9
Hu, Bo; Khara, Pratick; Christie, Peter J. (2019-07-09). "Structural bases for F plasmid conjugation and F pilus biogenesis in Escherichia coli". Proceedings of the National Academy of Sciences. 116 (28): 14222–14227. Bibcode:2019PNAS..11614222H. doi:10.1073/pnas.1904428116. ISSN 0027-8424. PMC 6628675. PMID 31239340. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628675
Glick, Bernard R.; Patten, Cheryl L. (2017). Molecular Biotechnology: Principles and Applications of Recombinant DNA. Washington DC: ASM Press.