Another feature that is often considered important for a model of quantum cellular automata is that it should be universal for quantum computation (i.e. that it can efficiently simulate quantum Turing machines, some arbitrary quantum circuit or simply all other quantum cellular automata).
Models which have been proposed recently impose further conditions, e.g. that quantum cellular automata should be reversible and/or locally unitary, and have an easily determined global transition function from the rule for updating individual cells. Recent results show that these properties can be derived axiomatically, from the symmetries of the global evolution.
The first formal model of quantum cellular automata to be researched in depth was that introduced by John Watrous. This model was developed further by Wim van Dam, as well as Christoph Dürr, Huong LêThanh, and Miklos Santha, Jozef Gruska. and Pablo Arrighi. However it was later realised that this definition was too loose, in the sense that some instances of it allow superluminal signalling. A second wave of models includes those of Susanne Richter and Reinhard Werner, of Benjamin Schumacher and Reinhard Werner, of Carlos Pérez-Delgado and Donny Cheung, and of Pablo Arrighi, Vincent Nesme and Reinhard Werner. These are all closely related, and do not suffer any such locality issue. In the end one can say that they all agree to picture quantum cellular automata as just some large quantum circuit, infinitely repeating across time and space. Recent reviews of the topic are available here.
Watrous, John (1995), "On one-dimensional quantum cellular automata", Proc. 36th Annual Symposium on Foundations of Computer Science (Milwaukee, WI, 1995), Los Alamitos, CA: IEEE Comput. Soc. Press, pp. 528–537, doi:10.1109/SFCS.1995.492583, ISBN 0-8186-7183-1, MR 1619103, S2CID 7441203. 0-8186-7183-1
C. Pérez-Delgado and D. Cheung, "Local Unitary Quantum Cellular Automata",
Phys. Rev. A 76, 032320, 2007. See also arXiv:0709.0006 (quant-ph) http://www.arxiv.org/abs/0709.0006
D.J. Shepherd, T. Franz, R.F. Werner: Universally programmable Quantum Cellular Automaton. Phys. Rev. Lett. 97, 020502 (2006)
P. Arrighi, R. Fargetton, Z. Wang, Intrinsically universal one-dimensional quantum cellular automata in two flavours, Fundamenta Informaticae Vol.91, No.2, pp.197-230, (2009). See also (quant-ph) https://arxiv.org/abs/0704.3961
P. Arrighi, J. Grattage, A quantum Game of Life, Proceedings of JAC 2010, Turku, December 2010. TUCS Lecture Notes 13, 31-42, (2010). See also (quant-ph) and (Companion Website) https://arxiv.org/abs/arXiv:1010.3120
C. Pérez-Delgado and D. Cheung, "Local Unitary Quantum Cellular Automata",
Phys. Rev. A 76, 032320, 2007. See also arXiv:0709.0006 (quant-ph) http://www.arxiv.org/abs/0709.0006
B. Schumacher and R. Werner, "Reversible quantum cellular automata", quant-ph/0405174 http://www.arxiv.org/abs/quant-ph/0405174
Pablo Arrighi, Vincent Nesme, Reinhard Werner, One-dimensional quantum cellular automata over finite, unbounded configurations. See also (quant-ph) https://arxiv.org/abs/0711.3517
Pablo Arrighi, Vincent Nesme, Reinhard Werner, N-dimensional quantum cellular automata. See also (quant-ph) https://arxiv.org/abs/0711.3975
R. Feynman, "Simulating physics with computers", Int. J. Theor. Phys. 21, 1982: pp. 467–488.
D. Deutsch, "Quantum theory, the Church-Turing principle and the universal quantum computer" Proceedings of the Royal Society of London A 400 (1985), pp. 97–117.
G. Grossing and A. Zeilinger, "Quantum cellular automata", Complex Systems 2 (2), 1988: pp. 197–208 and 611–623.
Watrous, John (1995), "On one-dimensional quantum cellular automata", Proc. 36th Annual Symposium on Foundations of Computer Science (Milwaukee, WI, 1995), Los Alamitos, CA: IEEE Comput. Soc. Press, pp. 528–537, doi:10.1109/SFCS.1995.492583, ISBN 0-8186-7183-1, MR 1619103, S2CID 7441203. 0-8186-7183-1
W. van Dam, "Quantum cellular automata", Master Thesis, Computer Science Nijmegen, Summer 1996.
C. Dürr and M. Santha, "A decision procedure for unitary linear quantum cellular automata", quant-ph/9604007 . http://www.arxiv.org/abs/quant-ph/9604007
C. Dürr, H. LêTanh, M. Santha, "A decision procedure for well-formed linear quantum cellular automata", Rand. Struct. Algorithms 11, 1997: pp. 381–394. See also cs.DS/9906024. http://www.arxiv.org/abs/cs.DS/9906024
J. Gruska, "Quantum Computing", McGraw-Hill, Cambridge 1999: Section 4.3.
Pablo Arrighi, An algebraic study of unitary one dimensional quantum cellular automata, Proceedings of MFCS 2006, LNCS 4162, (2006), pp122-133. See also quant-ph/0512040 https://arxiv.org/abs/quant-ph/0512040
B. Schumacher and R. Werner, "Reversible quantum cellular automata", quant-ph/0405174 http://www.arxiv.org/abs/quant-ph/0405174
Pablo Arrighi, Vincent Nesme, Reinhard Werner, One-dimensional quantum cellular automata over finite, unbounded configurations. See also (quant-ph) https://arxiv.org/abs/0711.3517
S. Richter and R.F. Werner, "Ergodicity of quantum cellular automata", J. Stat. Phys. 82, 1996: pp. 963–998. See also cond-mat/9504001 http://www.arxiv.org/abs/cond-mat/9504001
B. Schumacher and R. Werner, "Reversible quantum cellular automata", quant-ph/0405174 http://www.arxiv.org/abs/quant-ph/0405174
C. Pérez-Delgado and D. Cheung, "Local Unitary Quantum Cellular Automata",
Phys. Rev. A 76, 032320, 2007. See also arXiv:0709.0006 (quant-ph) http://www.arxiv.org/abs/0709.0006
Pablo Arrighi, Vincent Nesme, Reinhard Werner, One-dimensional quantum cellular automata over finite, unbounded configurations. See also (quant-ph) https://arxiv.org/abs/0711.3517
Pablo Arrighi, Vincent Nesme, Reinhard Werner, N-dimensional quantum cellular automata. See also (quant-ph) https://arxiv.org/abs/0711.3975
P. Arrighi, An overview of quantum cellular automata, arXiv:1904.12956 https://arxiv.org/abs/1904.12956
Terry Farrelly, A review of Quantum Cellular Automata arXiv:1904.13318 https://arxiv.org/abs/1904.13318
D. Meyer, "From quantum cellular automata to quantum lattice gases", Journal of Statistical Physics 85, 1996: pp. 551–574. See also quant-ph/9604003. http://www.arxiv.org/abs/quant-ph/9604003
D. Meyer, "On the absence of homogeneous scalar unitary cellular automata'", Physics Letters A 223, 1996: pp. 337–340. See also quant-ph/9604011. http://www.arxiv.org/abs/quant-ph/9604011
B. Boghosian and W. Taylor, "Quantum lattice-gas model for the many-particle Schrödinger equation in d dimensions", Physical Review E 57, 1998: pp. 54–66.
P. Love and B. Boghosian, "From Dirac to Diffusion: Decoherence in Quantum Lattice Gases", Quantum Information Processing 4, 2005, pp. 335–354.
B. Chophard and M. Droz, "Cellular Automata modeling of Physical Systems", Cambridge University Press, 1998.
Shakeel, Asif; Love, Peter J. (2013-09-01). "When is a quantum cellular automaton (QCA) a quantum lattice gas automaton (QLGA)?". Journal of Mathematical Physics. 54 (9): 092203. arXiv:1209.5367. Bibcode:2013JMP....54i2203S. doi:10.1063/1.4821640. ISSN 0022-2488. S2CID 2351651. /wiki/ArXiv_(identifier)
P. Tougaw, C. Lent, "Logical devices implemented using quantum cellular automata", J. Appl. Phys. 75, 1994: pp. 1818–1825